殆完全数
外观


殆完全数(almost perfect number)是一种特别的自然数,它所有的真约数(即除了自身以外的约数)的和,恰好等于它本身减一。若用除数函数(其真约数的和及其本身)来表示,若一自然数n的除数函数σ(n)等于2n - 1,该自然数即为殆完全数。殆完全数是一种亏数。亏度(σ(n) − 2n)为-1。
例如4的除数函数为2+1=3,比4小1,因此4是殆完全数。
目前已知的殆完全数为2的非负次幂(OEIS数列A000079),因此唯一已知奇数的殆完全数为20 = 1,但尚未证明除了2的非负次幂以外,是否存在其他型式的殆完全数。可以证明若存在大于1的奇数殆完全数,至少会有六个素因数[1][2]。
若m是奇数殆完全数,则m(2m − 1)会是笛卡尔数[3],而且,若a和b满足,且4m − a and 4m + b都是素数,则m(4m − a)(4m + b)会是奇数的奇异数[4]。
参见
[编辑]参考资料
[编辑]- Richard K. Guy|Guy, R. K., Almost Perfect, Quasi-Perfect, Pseudoperfect, Harmonic, Weird, Multiperfect and Hyperperfect Numbers. §B2 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 16 and 45-53, 1994.
- Singh, S., Fermat's Enigma: The Epic Quest to Solve the World's Greatest Mathematical Problem. New York: Walker, p. 13, 1997.
- ^ Kishore, Masao. Odd integers N with five distinct prime factors for which 2−10−12 < σ(N)/N < 2+10−12 (PDF). Mathematics of Computation. 1978, 32: 303–309. ISSN 0025-5718. JSTOR 2006281. MR 0485658. Zbl 0376.10005. doi:10.2307/2006281.
- ^ Kishore, Masao. On odd perfect, quasiperfect, and odd almost perfect numbers. Mathematics of Computation. 1981, 36 (154): 583–586. ISSN 0025-5718. JSTOR 2007662. Zbl 0472.10007. doi:10.2307/2007662
.
- ^ Banks, William D.; Güloğlu, Ahmet M.; Nevans, C. Wesley; Saidak, Filip. Descartes numbers. De Koninck, Jean-Marie; Granville, Andrew; Luca, Florian (编). Anatomy of integers. Based on the CRM workshop, Montreal, Canada, March 13–17, 2006. CRM Proceedings and Lecture Notes 46. Providence, RI: American Mathematical Society. 2008: 167–173. ISBN 978-0-8218-4406-9. Zbl 1186.11004.
- ^
Melfi, Giuseppe. On the conditional infiniteness of primitive weird numbers. Journal of Number Theory. 2015, 147: 508–514. doi:10.1016/j.jnt.2014.07.024
.