不尋常數
外观


不尋常數(英語:unusual number)是指一整數n的最大質因數大於。
Daniel H Greene和高德纳在《Mathematics for the Analysis of Algorithms》一書中的問題中有類似的定義,但其定義是最大質因數大於等於平方根[1],而書中沒有說明這類的數字不尋常的原因。
所有質數均為不尋常數。針對質數,其小於的倍數,也就是,都會是不尋常數。
k-光滑數是指其最大質因數小於或等於k,因此若整數n不是光滑數,此整數就是不尋常數。
例子
[编辑]前幾個不尋常數為:
- 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67.... (OEIS數列A064052)
前幾個非質數的不尋常數為:
- 6, 10, 14, 15, 20, 21, 22, 26, 28, 33, 34, 35, 38, 39, 42, 44, 46, 51, 52, 55, 57, 58, 62, 65, 66, 68, 69, 74, 76, 77, 78, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 99, 102.... (OEIS數列A063763)
分佈
[编辑]若用u(n)表示小於等於n的整數中的不尋常數個數,u(n)和n有以下的關係:
n | u(n) | u(n) / n |
10 | 6 | 0.6 |
100 | 67 | 0.67 |
1000 | 715 | 0.72 |
10000 | 7319 | 0.73 |
100000 | 73322 | 0.73 |
1000000 | 731660 | 0.73 |
10000000 | 7280266 | 0.73 |
100000000 | 72467077 | 0.72 |
1000000000 | 721578596 | 0.72 |
數學家理查德·施羅培爾在1972年證明了若任意選擇整數,選到不尋常數的漸進機率為ln(2),也就是說:
參考資料
[编辑]- ^ Daniel H Greene、高德纳. Mathematics for the Analysis of Algorithms. Springer Science & Business Media. 2007-10-05 [2025-05-01]. ISBN 0817647287.
Let us say that the positive number n is unusual if its largest prime factor is at least .