跳至內容

磷黴素

維基百科,自由的百科全書
磷黴素
Structural formula of fosfomycin
Ball-and-stick model of the fosfomycin molecule
臨床資料
商品名英語Drug nomenclatureMonuril、Monurol、Ivozfo及其他
其他名稱Phosphomycin, phosphonomycin, fosfomycin tromethamine
AHFS/Drugs.comMonograph
MedlinePlusa697008
核准狀況
給藥途徑靜脈注射, 口服給藥
ATC碼
法律規範狀態
法律規範
藥物動力學數據
生物利用度30–37% (口服磷黴素的氨丁三醇鹽),會受食物攝取影響
血漿蛋白結合率Nil
藥物代謝Nil
生物半衰期5.7小時(平均)
排泄途徑臟, 以藥物原形排除
識別資訊
  • [(2R,3S)-3-methyloxiran-2-yl]phosphonic acid
CAS號23155-02-4
78964-85-9 (tromethamine salt))  checkY
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard英語CompTox Chemicals Dashboard (EPA)
ECHA InfoCard100.041.315 編輯維基數據鏈接
化學資訊
化學式C3H7O4P
摩爾質量138.06 g·mol−1
3D模型(JSmol英語JSmol
熔點94 °C(201 °F)
  • C[C@H]1[C@H](O1)P(=O)(O)O
  • InChI=1S/C3H7O4P/c1-2-3(7-2)8(4,5)6/h2-3H,1H3,(H2,4,5,6)/t2-,3+/m0/s1 checkY
  • Key:YMDXZJFXQJVXBF-STHAYSLISA-N checkY

磷黴素INN:fosfomycin)常見商品名 Monurol,由弗氏鏈黴菌(Streptomyces fradiae)產生而發現,為含磷抗生素,有抑制或殺滅革蘭氏陽性和陰性菌的作用,主要用於治療下尿路感染(下尿路通常指膀胱尿道)的抗生素[8]。不適用於治療臟感染,偶爾用於治療前列腺感染[8]。一般的給藥路徑為口服[8]。也有靜脈注射製劑可供使用[9]

使用後常見的副作用有腹瀉噁心頭痛念珠菌性外陰陰道炎[8]嚴重的副作用有過敏反應偽膜性結腸炎[8]雖然沒發現個體於懷孕期間使用會對胎兒有害,但並不推薦使用。[10]進行母乳哺育的個體單次服用,對於嬰兒似乎安全。[10]它通過干擾細菌細胞壁的生成而發揮作用。[8]

磷黴素於1969年被發現。並在1996年在美國取得批准用於醫療用途[8][11]並已列入世界衛生組織基本藥物標準清單之中。[12]世界衛生組織(WHO)認為它是人類不可或缺的藥物[13]。此藥物有其非專利藥物在市場中銷售[14]

此藥物最初是利用某些類型的鏈球菌來生產,現在則改用化學合成法生產[11]

醫療用途

[編輯]

磷黴素用於治療膀胱感染及尿路感染(urinary tract infection簡稱UTI),通常口服單劑量即可。[15]

不建議12歲以下兒童使用磷黴素口服製劑。[16]

此外,醫界也在研究磷黴素在治療其他疾病方面的潛力。[17]近來由於全球抗生素抗藥性案例數目升高的問題導致人們又開始重視磷黴素這種藥物。[18]

磷黴素可有效治療尿路感染和複雜性尿路感染(包括急性腎盂腎炎英語pyelonephritis)。複雜尿路感染的標準用藥方案是每48或72小時口服一次,每次劑量3克,共3次給藥。或者當以靜脈注射形式給藥時,每8小時一次,每次6克,持續7至14天。[9]

有越來越多使用靜脈注射磷黴素製劑於治療由多重抗藥細菌英語Multidrug-resistant bacteria引起的感染,通常是以聯合用藥的方式以避免產生抗藥性,及利用其與多種其他抗菌藥物的協同作用。在實際應用中,靜脈注射磷黴素最常用於治療肺炎(34%)、血流感染(22%)和尿路感染(21%)。在大多數情況下,它與β-內醯胺抗生素聯合使用,且在大約一半的病例中,它被用作經驗性治療。[19][20]成人每日劑量通常為12至24克。[21]當以持續輸注方式給藥時,磷黴素的起始劑量為8克,隨後每日劑量為16克或24克。建議腎功能正常的患者採用持續輸注。[21][22]

磷黴素在體外和體內研究中均顯示出強效的抗生物膜活性,包括針對醫用植入物感染。它對革蘭氏陽性菌(包括耐甲氧西林金黃色葡萄球菌(MRSA))和革蘭氏陰性菌均保持抗生物膜活性。[23]

細菌敏感性

[編輯]

磷黴素分子具有環氧環,環張力很大,因此很活潑。[24]

磷黴素抗菌活性廣泛,對革蘭氏陽性和革蘭氏陰性病原菌均有效。[25]腸球菌E. faecalis)、大腸桿菌E. coli)以及各種革蘭氏陰性菌如檸檬酸桿菌屬Citrobacter)和變形桿菌屬Proteus)均有較強的抗菌活性。由於磷黴素在低pH值環境中具有較強的活性,且主要以活性形式排出到尿液中,已被用於預防和治療這些泌尿系統病原體引起的尿路感染。它對腐生葡萄球菌英語Staphylococcus saprophyticusS. saprophyticus),克雷伯氏菌屬Klebsiella)和腸桿菌屬Enterobacter)的活性是可變的,應通過最小抑菌濃度檢測確認。由於該藥物不受交叉抗藥問題的影響,所以對產超廣譜β-內醯胺酶(ESBL)病原體,特別是生產ESBL的大腸桿菌活性有良至優的程度。現有的臨床數據支持其用於易感生物引起的簡單型尿路感染。然而,當細菌感染擴散到全身時,我們不能再用"每公升藥物濃度64毫克"這個標準來判斷藥物是否有效。這個標準可能只適用於像尿道感染這種局部感染。[26]

抗藥性

[編輯]

使用磷黴素治療中經常會產生抗藥性,導致其不適用於嚴重感染的持續性治療。細菌發生突變,導致非必需甘油磷酸轉運蛋白失活,使其對磷黴素產生抗藥性。[27][28][29]但仍能使用磷黴素來治療抗甲氧西林金黃色葡萄球菌感染。[30]

將磷黴素與至少另一種活性藥物一起使用可降低產生抗藥性的風險。磷黴素與許多其他抗生素協同作用,包括胺基糖苷類抗生素碳青黴烯頭孢菌素達托黴素奧利萬星英語Oritavancin[31]

磷黴素抗藥性也已被鑑定並在染色體質粒上編碼。[32]

三種相關的磷黴素抗性酶(命名為 FosA、FosB 和 FosX)是乳醯穀胱甘肽裂解酶英語lactoylglutathione lyase超家族的成員。這些酶通過親核攻擊磷黴素的碳1,打開環氧化物環,使藥物無效。[33]

這些酶因反應中使用的親核試劑的種類而異: FosA為穀胱甘肽,FosB為芽孢桿菌硫醇英語Bacillithiol[34][35]FosX為水。[32]

一般來說,FosA和FosX酶由革蘭氏陰性菌產生,而FosB由革蘭氏陽性菌產生。[32]

FosC用ATP,向磷黴素添加一個磷酸基團,從而改變其特性並使藥物無效。[36]

副作用

[編輯]

人體對該藥物耐受性良好,且有害副作用發生率低。[15]

作用機制

[編輯]

雖然磷黴素名稱以-黴素(-omycin)結尾,它不是一種大環內酯。磷黴素通過滅活UDP-N-乙醯氨基葡萄糖-3- 烯醇丙酮基轉移酶抑制細菌細胞壁生物合成。[37]這種酶催化肽聚糖生物合成的必要步驟:連接磷酸烯醇式丙酮酸(PEP)到UDP-N-乙醯葡萄糖胺的3'-羥基,PEP提供肽聚糖相互連接的橋接劑。磷黴素是一種PEP類似物,可以通過烷基化活性部位半胱氨酸殘基(大腸桿菌中的Cys115)來抑制MurA。[38][39]

磷黴素通過甘油磷酸轉運蛋白進入細菌細胞。[40]

歷史

[編輯]

磷黴素(Fosfomycin,原名phosphonomycin)是由默克公司西班牙的西班牙青黴菌和抗生素公司(CEPA)共同發現。它首先是通過篩選從土壤樣本中分離出來的弗雷迪鏈黴菌英語Streptomyces fradiae肉湯培養物進行分離,確定其能夠使生長中的細菌形成原生質球。1969年有一系列論文來描述這一發現。[41]CEPA於1971年在其阿蘭胡埃斯工廠開始大規模生產磷黴素。[42]

生物合成

[編輯]

科學家已成功複製並分析弗雷迪鏈黴菌中製造磷黴素的整套基因(基因簇)。藉由趙惠民威爾弗雷德·范德東克英語Wilfred van der Donk研究團隊中的的賴安·伍德爾(Ryan Woodyer)的工作,他們也在淡紫鏈黴菌(Streptomyces lividans)中成功生產磷黴素。[43]

合成生產

[編輯]

磷黴素的商業化生產主要依賴於一個化學轉化過程:通過製備順式丙烯基膦酸的環氧化物以產生磷黴素外消旋混合物而達成。[44]

參考文獻

[編輯]
  1. ^ Prescription medicines: registration of new chemical entities in Australia, 2017. Therapeutic Goods Administration (TGA). 2022-06-21 [2023-04-09]. (原始內容存檔於2023-04-10). 
  2. ^ Prescription medicines and biologicals: TGA annual summary 2017. Therapeutic Goods Administration (TGA). 2022-06-21 [2024-03-31]. 
  3. ^ https://www.tga.gov.au/resources/prescription-medicines-registrations/cipfosin-cipla-fosfomycin-cipla-australia-pty-ltd
  4. ^ Regulatory Decision Summary - Ivozfo. Health Canada. 2014-10-23 [2022-06-07]. (原始內容存檔於2022-06-07). 
  5. ^ Monuril 3g granules for oral solution - Summary of Product Characteristics (SmPC). (emc). 1 June 2021 [2022-06-07]. (原始內容存檔於2022-03-08). 
  6. ^ Fomicyt 40 mg/mL powder for solution for infusion - Summary of Product Characteristics (SmPC). (emc). 2021-02-11 [2022-06-07]. (原始內容存檔於2022-06-07). 
  7. ^ Monurol- fosfomycin tromethamine powder. DailyMed. 2019-10-24 [2022-06-07]. (原始內容存檔於2022-06-07). 
  8. ^ 8.0 8.1 8.2 8.3 8.4 8.5 8.6 Fosfomycin Tromethamine Monograph for Professionals. Drugs.com. [2019-10-29]. (原始內容存檔於2019-10-29) (英語). 
  9. ^ 9.0 9.1 Oral and Intravenous Fosfomycin for the Treatment of Complicated Urinary Tract Infections. The Canadian Journal of Infectious Diseases & Medical Microbiology (Hindawi Limited). 2020-03-28, 2020: 8513405. PMC 7142339可免費查閱. PMID 32300381. doi:10.1155/2020/8513405. 
  10. ^ 10.0 10.1 Fosfomycin (Monurol) Use During Pregnancy. Drugs.com. [29 October 2019]. (原始內容存檔於2019-10-29) (英語). 
  11. ^ 11.0 11.1 Antibiotic and Chemotherapy E-Book. Elsevier Health Sciences. 2010: 259 [2021-07-31]. ISBN 9780702047657. (原始內容存檔於2021-08-28) (英語). 
  12. ^ World Health Organization model list of essential medicines: 21st list 2019. Geneva: World Health Organization. 2019. WHO/MVP/EMP/IAU/2019.06. License: CC BY-NC-SA 3.0 IGO. 
  13. ^ Critically important antimicrobials for human medicine 6th revision. Geneva: World Health Organization. 2019. ISBN 9789241515528. 
  14. ^ British national formulary : BNF 76 76. Pharmaceutical Press. 2018: 560–561. ISBN 9780857113382. 
  15. ^ 15.0 15.1 Fosfomycin tromethamine. A review of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy as a single-dose oral treatment for acute uncomplicated lower urinary tract infections. Drugs. April 1997, 53 (4): 637–56. PMID 9098664. doi:10.2165/00003495-199753040-00007. 
  16. ^ MONURIL SACHETS 3G. [May 26, 2014]. (原始內容存檔於2014-05-28). 
  17. ^ Fosfomycin: use beyond urinary tract and gastrointestinal infections. Clinical Infectious Diseases. April 2008, 46 (7): 1069–77. PMID 18444827. doi:10.1086/527442. 
  18. ^ Potential of old-generation antibiotics to address current need for new antibiotics. Expert Review of Anti-Infective Therapy. October 2008, 6 (5): 593–600. PMID 18847400. doi:10.1586/14787210.6.5.593. 
  19. ^ Meschiari M, Faltoni M, Kaleci S, Tassoni G, Orlando G, Franceschini E, Burastero G, Bedini A, Serio L, Biagioni E, Melegari G, Venturelli C, Sarti M, Bertellini E, Girardis M, Mussini C. Intravenous fosfomycin in combination regimens as a treatment option for difficult-to-treat infections due to multi-drug-resistant Gram-negative organisms: A real-life experience. International Journal of Antimicrobial Agents. May 2024, 63 (5): 107134. PMID 38453094. doi:10.1016/j.ijantimicag.2024.107134. 
  20. ^ Zerbato V, Sanson G, Fusaro L, Gerussi V, Sincovich S, Dellai F, Del Fabro G, Geremia N, Maurel C, Giacomazzi D, m Biasinutto C, Di Girolamo FG, Scrivo G, Costantino V, Di Santolo M. Intravenous Fosfomycin for Difficult-to-Treat Infections: A Real-Life Multicentric Study in Italy. Antibiotics. 2025-04-14, 14 (4): 401. ISSN 2079-6382. PMC 12024000可免費查閱 請檢查|pmc=值 (幫助). doi:10.3390/antibiotics14040401可免費查閱 (英語). 
  21. ^ 21.0 21.1 Antonello RM, Principe L, Maraolo AE, Viaggi V, Pol R, Fabbiani M, Montagnani F, Lovecchio A, Luzzati R, Di Bella S. Fosfomycin as Partner Drug for Systemic Infection Management. A Systematic Review of Its Synergistic Properties from In Vitro and In Vivo Studies. Antibiotics. August 2020, 9 (8): 500. PMC 7460049可免費查閱. PMID 32785114. doi:10.3390/antibiotics9080500可免費查閱. 
  22. ^ Zerbato, Verena; Sanson, Gianfranco; Fusaro, Lisa; Gerussi, Valentina; Sincovich, Sara; Dellai, Fabiana; Del Fabro, Giovanni; Geremia, Nicholas; Maurel, Cristina; Giacomazzi, Donatella; Biasinutto, Chiara. Intravenous Fosfomycin for Difficult-to-Treat Infections: A Real-Life Multicentric Study in Italy. Antibiotics. 2025-04-14, 14 (4) [2025-04-14]. ISSN 2079-6382. doi:10.3390/antibiotics14040401 (英語). 
  23. ^ Di Bella S, Mearelli F, Gatti M. The importance of antibiofilm antibiotics in hardware-associated infections. Clinical Infectious Diseases. February 2025. PMID 39935305. doi:10.1093/cid/ciaf064. 
  24. ^ Cao, Yingying; Peng, Qingyao. The intriguing biology and chemistry of fosfomycin: the only marketed phosphonate antibiotic. RSC Advances. 2019-12-19, 9 (72): 42204–42218 [2025-05-07]. doi:10.1039/c9ra08299a. 
  25. ^ Falagas, Matthew E; Vouloumanou, Evridiki K. Fosfomycin. RSC Advances. 2016-09-09, 29 (2): 321–347 [2025-05-07]. doi:10.1128/CMR.00068-15. 
  26. ^ Docobo-Pérez, F; Drusano, G L. Pharmacodynamics of Fosfomycin: Insights into Clinical Use for Antimicrobial Resistance. Antimicrobial Agents and Chemotherapy. 2015-08-14, 59 (9): 5602–5610 [2025-05-07]. doi:10.1128/AAC.00752-15. 
  27. ^ Nucleotide sequence and intracellular location of the product of the fosfomycin resistance gene from transposon Tn2921. Antimicrobial Agents and Chemotherapy. October 1990, 34 (10): 2016–8. PMC 171982可免費查閱. PMID 1963292. doi:10.1128/AAC.34.10.2016. 
  28. ^ The mechanism of action of fosfomycin (phosphonomycin). Annals of the New York Academy of Sciences. May 1974, 235 (1). Bibcode:1974NYASA.235..364K. PMID 4605290. doi:10.1111/j.1749-6632.1974.tb43277.x.  已忽略未知參數|paes= (幫助)
  29. ^ Molecular Mechanisms and Clinical Impact of Acquired and Intrinsic Fosfomycin Resistance. Antibiotics. April 2013, 2 (2): 217–36. PMC 4790336可免費查閱. PMID 27029300. doi:10.3390/antibiotics2020217. 
  30. ^ Omori K, Kitagawa H, Takada M, Maeda R, Nomura T, Kubo Y, Shigemoto N, Ohge H. Fosfomycin as salvage therapy for persistent methicillin-resistant Staphylococcus aureus bacteremia: A case series and review of the literature. J Infect Chemother. April 2024, 30 (4): 352–356. PMID 37922987. doi:10.1016/j.jiac.2023.10.024. 
  31. ^ Fosfomycin as Partner Drug for Systemic Infection Management. A Systematic Review of Its Synergistic Properties from In Vitro and In Vivo Studies. Antibiotics. August 2020, 9 (8): 500. PMC 7460049可免費查閱. PMID 32785114. doi:10.3390/antibiotics9080500. 
  32. ^ 32.0 32.1 32.2 https://archive.org/details/gluthionetransfe00sies/page/367 |chapterurl=缺少標題 (幫助). Gluthione Transferases and Gamma-Glutamyl Transpeptidases. Methods in Enzymology 401. 2005: 367–379. ISBN 9780121828066. PMID 16399398. doi:10.1016/S0076-6879(05)01023-2. 
  33. ^ Zhanel, George G; Zhanel, Michael A. Intravenous Fosfomycin: An Assessment of Its Potential for Use in the Treatment of Systemic Infections in Canada. The Canadian Journal of Infectious Diseases & Medical Microbiology. 2018-06-25,. 2018:8912039 [2025-05-08]. doi:10.1155/2018/8912039. 
  34. ^ Chemical and Chemoenzymatic syntheses of bacillithiol: a unique low-molecular-weight thiol amongst low G + C Gram-positive bacteria. Angewandte Chemie. July 2011, 50 (31): 7101–4. PMID 21751306. doi:10.1002/anie.201100196. 
  35. ^ Mechanistic studies of FosB: a divalent-metal-dependent bacillithiol-S-transferase that mediates fosfomycin resistance in Staphylococcus aureus. The Biochemical Journal. April 2013, 451 (1): 69–79. PMC 3960972可免費查閱. PMID 23256780. doi:10.1042/BJ20121541. 
  36. ^ Product of fosC, a gene from Pseudomonas syringae, mediates fosfomycin resistance by using ATP as cosubstrate. Antimicrobial Agents and Chemotherapy. July 1995, 39 (7): 1569–73. PMC 162783可免費查閱. PMID 7492106. doi:10.1128/aac.39.7.1569. 
  37. ^ MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Escherichia coli. Journal of Bacteriology. July 1995, 177 (14): 4194–7. PMC 177162可免費查閱. PMID 7608103. doi:10.1128/jb.177.14.4194-4197.1995. 
  38. ^ Functional consequence of covalent reaction of phosphoenolpyruvate with UDP-N-acetylglucosamine 1-carboxyvinyltransferase (MurA). The Journal of Biological Chemistry. April 2012, 287 (16): 12657–67. PMC 3339971可免費查閱. PMID 22378791. doi:10.1074/jbc.M112.342725. 
  39. ^ Determination of the pKa value of C115 in MurA (UDP-N-acetylglucosamine enolpyruvyltransferase) from Enterobacter cloacae. Biochemistry. October 2000, 39 (41): 12671–7. PMID 11027147. doi:10.1021/bi001310x. 
  40. ^ Interaction of fosfomycin with the glycerol 3-phosphate transporter of Escherichia coli. Biochimica et Biophysica Acta (BBA) - General Subjects. December 2011, 1810 (12): 1323–9. PMID 21791237. doi:10.1016/j.bbagen.2011.07.006. 
  41. ^ Chapter 2, Rational approaches to antibiotic discovery: pre-genomic directed and phenotypic screening. Springer. 2011: 46. ISBN 978-1-4614-1400-1. doi:10.1007/978-1-4614-1400-1_2. 
  42. ^ Encros About us: Our history. 網際網路檔案館存檔,存檔日期2011-09-14.
  43. ^ Heterologous production of fosfomycin and identification of the minimal biosynthetic gene cluster. Chemistry & Biology. November 2006, 13 (11): 1171–82. PMID 17113999. doi:10.1016/j.chembiol.2006.09.007. 
  44. ^ Marocco, Christian P.; Davis, Erik V.; Finnell, Julie E.; Nguyen, Phung-Hoang; Mateer, Scott C.; Ghiviriga, Ion; Padgett, Clifford W.; Feske, Brent D. Asymmetric synthesis of (−)-fosfomycin and its trans-(1S,2S)-diastereomer using a biocatalytic reduction as the key step. Tetrahedron: Asymmetry (Elsevier BV). 2011, 22 (18–19): 1784–1789. ISSN 0957-4166. doi:10.1016/j.tetasy.2011.10.009.