磷霉素
![]() | 此条目的引用需要清理,使其符合格式。 (2021年7月31日) |
![]() | |
![]() | |
临床资料 | |
---|---|
商品名 | Monuril、Monurol、Ivozfo及其他 |
其他名称 | Phosphomycin, phosphonomycin, fosfomycin tromethamine |
AHFS/Drugs.com | Monograph |
MedlinePlus | a697008 |
核准状况 | |
给药途径 | 静脉注射, 口服给药 |
ATC码 | |
法律规范状态 | |
法律规范 |
|
药物动力学数据 | |
生物利用度 | 30–37% (口服磷霉素的氨丁三醇盐),会受食物摄取影响 |
血浆蛋白结合率 | Nil |
药物代谢 | Nil |
生物半衰期 | 5.7小时(平均) |
排泄途径 | 肾脏, 以药物原形排除 |
识别信息 | |
| |
CAS号 | 23155-02-4( 78964-85-9 (tromethamine salt)) ![]() |
PubChem CID | |
DrugBank | |
ChemSpider | |
UNII | |
KEGG | |
ChEBI | |
ChEMBL | |
CompTox Dashboard (EPA) | |
ECHA InfoCard | 100.041.315 |
化学信息 | |
化学式 | C3H7O4P |
摩尔质量 | 138.06 g·mol−1 |
3D模型(JSmol) | |
熔点 | 94 °C(201 °F) |
| |
|
磷霉素(INN:fosfomycin)常见商品名 Monurol,由弗氏链霉菌(Streptomyces fradiae)产生而发现,为含磷抗生素,有抑制或杀灭革兰氏阳性和阴性菌的作用,主要用于治疗下尿路感染(下尿路通常指膀胱和尿道)的抗生素[8]。不适用于治疗肾脏感染,偶尔用于治疗前列腺感染[8]。一般的给药路径为口服[8]。也有静脉注射制剂可供使用[9]。
使用后常见的副作用有腹泻、恶心、头痛和念珠菌性外阴阴道炎。[8]严重的副作用有过敏反应和伪膜性结肠炎。[8]虽然没发现个体于怀孕期间使用会对胎儿有害,但并不推荐使用。[10]进行母乳哺育的个体单次服用,对于婴儿似乎安全。[10]它通过干扰细菌细胞壁的生成而发挥作用。[8]
磷霉素于1969年被发现。并在1996年在美国取得批准用于医疗用途[8][11]并已列入世界卫生组织基本药物标准清单之中。[12]。世界卫生组织(WHO)认为它是人类不可或缺的药物[13]。此药物有其非专利药物在市场中销售[14]。
此药物最初是利用某些类型的链球菌来生产,现在则改用化学合成法生产[11]。
医疗用途
[编辑]磷霉素用于治疗膀胱感染及尿路感染(urinary tract infection简称UTI),通常口服单剂量即可。[15]
不建议12岁以下儿童使用磷霉素口服制剂。[16]
此外,医界也在研究磷霉素在治疗其他疾病方面的潜力。[17]近来由于全球抗生素抗药性案例数目升高的问题导致人们又开始重视磷霉素这种药物。[18]
磷霉素可有效治疗尿路感染和复杂性尿路感染(包括急性肾盂肾炎)。复杂尿路感染的标准用药方案是每48或72小时口服一次,每次剂量3克,共3次给药。或者当以静脉注射形式给药时,每8小时一次,每次6克,持续7至14天。[9]
有越来越多使用静脉注射磷霉素制剂于治疗由多重抗药细菌引起的感染,通常是以联合用药的方式以避免产生抗药性,及利用其与多种其他抗菌药物的协同作用。在实际应用中,静脉注射磷霉素最常用于治疗肺炎(34%)、血流感染(22%)和尿路感染(21%)。在大多数情况下,它与β-内酰胺抗生素联合使用,且在大约一半的病例中,它被用作经验性治疗。[19][20]成人每日剂量通常为12至24克。[21]当以持续输注方式给药时,磷霉素的起始剂量为8克,随后每日剂量为16克或24克。建议肾功能正常的患者采用持续输注。[21][22]
磷霉素在体外和体内研究中均显示出强效的抗生物膜活性,包括针对医用植入物感染。它对革兰氏阳性菌(包括耐甲氧西林金黄色葡萄球菌(MRSA))和革兰氏阴性菌均保持抗生物膜活性。[23]
细菌敏感性
[编辑]磷霉素抗菌活性广泛,对革兰氏阳性和革兰氏阴性病原菌均有效。[25]对肠球菌(E. faecalis)、大肠杆菌(E. coli)以及各种革兰氏阴性菌如柠檬酸杆菌属(Citrobacter)和变形杆菌属(Proteus)均有较强的抗菌活性。由于磷霉素在低pH值环境中具有较强的活性,且主要以活性形式排出到尿液中,已被用于预防和治疗这些泌尿系统病原体引起的尿路感染。它对腐生葡萄球菌(S. saprophyticus),克雷伯氏菌属(Klebsiella)和肠杆菌属(Enterobacter)的活性是可变的,应通过最小抑菌浓度检测确认。由于该药物不受交叉抗药问题的影响,所以对产超广谱β-内酰胺酶(ESBL)病原体,特别是生产ESBL的大肠杆菌活性有良至优的程度。现有的临床数据支持其用于易感生物引起的简单型尿路感染。然而,当细菌感染扩散到全身时,我们不能再用"每升药物浓度64毫克"这个标准来判断药物是否有效。这个标准可能只适用于像尿道感染这种局部感染。[26]
抗药性
[编辑]使用磷霉素治疗中经常会产生抗药性,导致其不适用于严重感染的持续性治疗。细菌发生突变,导致非必需甘油磷酸转运蛋白失活,使其对磷霉素产生抗药性。[27][28][29]但仍能使用磷霉素来治疗抗甲氧西林金黄色葡萄球菌感染。[30]
将磷霉素与至少另一种活性药物一起使用可降低产生抗药性的风险。磷霉素与许多其他抗生素协同作用,包括胺基糖苷类抗生素、碳青霉烯、头孢菌素、达托霉素和奥利万星。[31]
三种相关的磷霉素抗性酶(命名为 FosA、FosB 和 FosX)是乳酰谷胱甘肽裂解酶超家族的成员。这些酶通过亲核攻击磷霉素的碳1,打开环氧化物环,使药物无效。[33]
这些酶因反应中使用的亲核试剂的种类而异: FosA为谷胱甘肽,FosB为芽孢杆菌硫醇,[34][35]FosX为水。[32]
一般来说,FosA和FosX酶由革兰氏阴性菌产生,而FosB由革兰氏阳性菌产生。[32]
FosC用ATP,向磷霉素添加一个磷酸基团,从而改变其特性并使药物无效。[36]
副作用
[编辑]人体对该药物耐受性良好,且有害副作用发生率低。[15]
作用机制
[编辑]虽然磷霉素名称以-霉素(-omycin)结尾,它不是一种大环内酯。磷霉素通过灭活UDP-N-乙酰氨基葡萄糖-3- 烯醇丙酮基转移酶抑制细菌细胞壁生物合成。[37]这种酶催化肽聚糖生物合成的必要步骤:连接磷酸烯醇式丙酮酸(PEP)到UDP-N-乙酰葡萄糖胺的3'-羟基,PEP提供肽聚糖相互连接的桥接剂。磷霉素是一种PEP类似物,可以通过烷基化活性部位半胱氨酸残基(大肠杆菌中的Cys115)来抑制MurA。[38][39]
磷霉素通过甘油磷酸转运蛋白进入细菌细胞。[40]
历史
[编辑]磷霉素(Fosfomycin,原名phosphonomycin)是由默克公司和西班牙的西班牙青霉菌和抗生素公司(CEPA)共同发现。它首先是通过筛选从土壤样本中分离出来的弗雷迪链霉菌肉汤培养物进行分离,确定其能够使生长中的细菌形成原生质球。1969年有一系列论文来描述这一发现。[41]CEPA于1971年在其阿兰胡埃斯工厂开始大规模生产磷霉素。[42]
生物合成
[编辑]科学家已成功复制并分析弗雷迪链霉菌中制造磷霉素的整套基因(基因簇)。借由赵惠民和威尔弗雷德·范德东克研究团队中的的赖安·伍德尔(Ryan Woodyer)的工作,他们也在淡紫链霉菌(Streptomyces lividans)中成功生产磷霉素。[43]
合成生产
[编辑]磷霉素的商业化生产主要依赖于一个化学转化过程:通过制备顺式丙烯基膦酸的环氧化物以产生磷霉素外消旋混合物而达成。[44]
参考文献
[编辑]- ^ Prescription medicines: registration of new chemical entities in Australia, 2017. Therapeutic Goods Administration (TGA). 2022-06-21 [2023-04-09]. (原始内容存档于2023-04-10).
- ^ Prescription medicines and biologicals: TGA annual summary 2017. Therapeutic Goods Administration (TGA). 2022-06-21 [2024-03-31].
- ^ https://www.tga.gov.au/resources/prescription-medicines-registrations/cipfosin-cipla-fosfomycin-cipla-australia-pty-ltd
- ^ Regulatory Decision Summary - Ivozfo. Health Canada. 2014-10-23 [2022-06-07]. (原始内容存档于2022-06-07).
- ^ Monuril 3g granules for oral solution - Summary of Product Characteristics (SmPC). (emc). 1 June 2021 [2022-06-07]. (原始内容存档于2022-03-08).
- ^ Fomicyt 40 mg/mL powder for solution for infusion - Summary of Product Characteristics (SmPC). (emc). 2021-02-11 [2022-06-07]. (原始内容存档于2022-06-07).
- ^ Monurol- fosfomycin tromethamine powder. DailyMed. 2019-10-24 [2022-06-07]. (原始内容存档于2022-06-07).
- ^ 8.0 8.1 8.2 8.3 8.4 8.5 8.6 Fosfomycin Tromethamine Monograph for Professionals. Drugs.com. [2019-10-29]. (原始内容存档于2019-10-29) (英语).
- ^ 9.0 9.1 Oral and Intravenous Fosfomycin for the Treatment of Complicated Urinary Tract Infections. The Canadian Journal of Infectious Diseases & Medical Microbiology (Hindawi Limited). 2020-03-28, 2020: 8513405. PMC 7142339
. PMID 32300381. doi:10.1155/2020/8513405.
- ^ 10.0 10.1 Fosfomycin (Monurol) Use During Pregnancy. Drugs.com. [29 October 2019]. (原始内容存档于2019-10-29) (英语).
- ^ 11.0 11.1 Antibiotic and Chemotherapy E-Book. Elsevier Health Sciences. 2010: 259 [2021-07-31]. ISBN 9780702047657. (原始内容存档于2021-08-28) (英语).
- ^ World Health Organization model list of essential medicines: 21st list 2019. Geneva: World Health Organization. 2019. WHO/MVP/EMP/IAU/2019.06. License: CC BY-NC-SA 3.0 IGO.
- ^ Critically important antimicrobials for human medicine 6th revision. Geneva: World Health Organization. 2019. ISBN 9789241515528.
- ^ British national formulary : BNF 76 76. Pharmaceutical Press. 2018: 560–561. ISBN 9780857113382.
- ^ 15.0 15.1 Fosfomycin tromethamine. A review of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy as a single-dose oral treatment for acute uncomplicated lower urinary tract infections. Drugs. April 1997, 53 (4): 637–56. PMID 9098664. doi:10.2165/00003495-199753040-00007.
- ^ MONURIL SACHETS 3G. [May 26, 2014]. (原始内容存档于2014-05-28).
- ^ Fosfomycin: use beyond urinary tract and gastrointestinal infections. Clinical Infectious Diseases. April 2008, 46 (7): 1069–77. PMID 18444827. doi:10.1086/527442.
- ^ Potential of old-generation antibiotics to address current need for new antibiotics. Expert Review of Anti-Infective Therapy. October 2008, 6 (5): 593–600. PMID 18847400. doi:10.1586/14787210.6.5.593.
- ^ Meschiari M, Faltoni M, Kaleci S, Tassoni G, Orlando G, Franceschini E, Burastero G, Bedini A, Serio L, Biagioni E, Melegari G, Venturelli C, Sarti M, Bertellini E, Girardis M, Mussini C. Intravenous fosfomycin in combination regimens as a treatment option for difficult-to-treat infections due to multi-drug-resistant Gram-negative organisms: A real-life experience. International Journal of Antimicrobial Agents. May 2024, 63 (5): 107134. PMID 38453094. doi:10.1016/j.ijantimicag.2024.107134.
- ^ Zerbato V, Sanson G, Fusaro L, Gerussi V, Sincovich S, Dellai F, Del Fabro G, Geremia N, Maurel C, Giacomazzi D, m Biasinutto C, Di Girolamo FG, Scrivo G, Costantino V, Di Santolo M. Intravenous Fosfomycin for Difficult-to-Treat Infections: A Real-Life Multicentric Study in Italy. Antibiotics. 2025-04-14, 14 (4): 401. ISSN 2079-6382. PMC 12024000
请检查
|pmc=
值 (帮助). doi:10.3390/antibiotics14040401(英语).
- ^ 21.0 21.1 Antonello RM, Principe L, Maraolo AE, Viaggi V, Pol R, Fabbiani M, Montagnani F, Lovecchio A, Luzzati R, Di Bella S. Fosfomycin as Partner Drug for Systemic Infection Management. A Systematic Review of Its Synergistic Properties from In Vitro and In Vivo Studies. Antibiotics. August 2020, 9 (8): 500. PMC 7460049
. PMID 32785114. doi:10.3390/antibiotics9080500
.
- ^ Zerbato, Verena; Sanson, Gianfranco; Fusaro, Lisa; Gerussi, Valentina; Sincovich, Sara; Dellai, Fabiana; Del Fabro, Giovanni; Geremia, Nicholas; Maurel, Cristina; Giacomazzi, Donatella; Biasinutto, Chiara. Intravenous Fosfomycin for Difficult-to-Treat Infections: A Real-Life Multicentric Study in Italy. Antibiotics. 2025-04-14, 14 (4) [2025-04-14]. ISSN 2079-6382. doi:10.3390/antibiotics14040401 (英语).
- ^ Di Bella S, Mearelli F, Gatti M. The importance of antibiofilm antibiotics in hardware-associated infections. Clinical Infectious Diseases. February 2025. PMID 39935305. doi:10.1093/cid/ciaf064.
- ^ Cao, Yingying; Peng, Qingyao. The intriguing biology and chemistry of fosfomycin: the only marketed phosphonate antibiotic. RSC Advances. 2019-12-19, 9 (72): 42204–42218 [2025-05-07]. doi:10.1039/c9ra08299a.
- ^ Falagas, Matthew E; Vouloumanou, Evridiki K. Fosfomycin. RSC Advances. 2016-09-09, 29 (2): 321–347 [2025-05-07]. doi:10.1128/CMR.00068-15.
- ^ Docobo-Pérez, F; Drusano, G L. Pharmacodynamics of Fosfomycin: Insights into Clinical Use for Antimicrobial Resistance. Antimicrobial Agents and Chemotherapy. 2015-08-14, 59 (9): 5602–5610 [2025-05-07]. doi:10.1128/AAC.00752-15.
- ^ The mechanism of action of fosfomycin (phosphonomycin). Annals of the New York Academy of Sciences. May 1974, 235 (1). Bibcode:1974NYASA.235..364K. PMID 4605290. doi:10.1111/j.1749-6632.1974.tb43277.x. 已忽略未知参数
|paes=
(帮助) - ^ Molecular Mechanisms and Clinical Impact of Acquired and Intrinsic Fosfomycin Resistance. Antibiotics. April 2013, 2 (2): 217–36. PMC 4790336
. PMID 27029300. doi:10.3390/antibiotics2020217.
- ^ Omori K, Kitagawa H, Takada M, Maeda R, Nomura T, Kubo Y, Shigemoto N, Ohge H. Fosfomycin as salvage therapy for persistent methicillin-resistant Staphylococcus aureus bacteremia: A case series and review of the literature. J Infect Chemother. April 2024, 30 (4): 352–356. PMID 37922987. doi:10.1016/j.jiac.2023.10.024.
- ^ Fosfomycin as Partner Drug for Systemic Infection Management. A Systematic Review of Its Synergistic Properties from In Vitro and In Vivo Studies. Antibiotics. August 2020, 9 (8): 500. PMC 7460049
. PMID 32785114. doi:10.3390/antibiotics9080500.
- ^ 32.0 32.1 32.2 https://archive.org/details/gluthionetransfe00sies/page/367
|chapterurl=
缺少标题 (帮助). Gluthione Transferases and Gamma-Glutamyl Transpeptidases. Methods in Enzymology 401. 2005: 367–379. ISBN 9780121828066. PMID 16399398. doi:10.1016/S0076-6879(05)01023-2. - ^ Zhanel, George G; Zhanel, Michael A. Intravenous Fosfomycin: An Assessment of Its Potential for Use in the Treatment of Systemic Infections in Canada. The Canadian Journal of Infectious Diseases & Medical Microbiology. 2018-06-25,. 2018:8912039 [2025-05-08]. doi:10.1155/2018/8912039.
- ^ Chemical and Chemoenzymatic syntheses of bacillithiol: a unique low-molecular-weight thiol amongst low G + C Gram-positive bacteria. Angewandte Chemie. July 2011, 50 (31): 7101–4. PMID 21751306. doi:10.1002/anie.201100196.
- ^ Mechanistic studies of FosB: a divalent-metal-dependent bacillithiol-S-transferase that mediates fosfomycin resistance in Staphylococcus aureus. The Biochemical Journal. April 2013, 451 (1): 69–79. PMC 3960972
. PMID 23256780. doi:10.1042/BJ20121541.
- ^ Product of fosC, a gene from Pseudomonas syringae, mediates fosfomycin resistance by using ATP as cosubstrate. Antimicrobial Agents and Chemotherapy. July 1995, 39 (7): 1569–73. PMC 162783
. PMID 7492106. doi:10.1128/aac.39.7.1569.
- ^ MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Escherichia coli. Journal of Bacteriology. July 1995, 177 (14): 4194–7. PMC 177162
. PMID 7608103. doi:10.1128/jb.177.14.4194-4197.1995.
- ^ Functional consequence of covalent reaction of phosphoenolpyruvate with UDP-N-acetylglucosamine 1-carboxyvinyltransferase (MurA). The Journal of Biological Chemistry. April 2012, 287 (16): 12657–67. PMC 3339971
. PMID 22378791. doi:10.1074/jbc.M112.342725.
- ^ Determination of the pKa value of C115 in MurA (UDP-N-acetylglucosamine enolpyruvyltransferase) from Enterobacter cloacae. Biochemistry. October 2000, 39 (41): 12671–7. PMID 11027147. doi:10.1021/bi001310x.
- ^ Interaction of fosfomycin with the glycerol 3-phosphate transporter of Escherichia coli. Biochimica et Biophysica Acta (BBA) - General Subjects. December 2011, 1810 (12): 1323–9. PMID 21791237. doi:10.1016/j.bbagen.2011.07.006.
- ^ Chapter 2, Rational approaches to antibiotic discovery: pre-genomic directed and phenotypic screening. Springer. 2011: 46. ISBN 978-1-4614-1400-1. doi:10.1007/978-1-4614-1400-1_2.
- ^ Encros About us: Our history. 互联网档案馆的存档,存档日期2011-09-14.
- ^ Heterologous production of fosfomycin and identification of the minimal biosynthetic gene cluster. Chemistry & Biology. November 2006, 13 (11): 1171–82. PMID 17113999. doi:10.1016/j.chembiol.2006.09.007.
- ^ Marocco, Christian P.; Davis, Erik V.; Finnell, Julie E.; Nguyen, Phung-Hoang; Mateer, Scott C.; Ghiviriga, Ion; Padgett, Clifford W.; Feske, Brent D. Asymmetric synthesis of (−)-fosfomycin and its trans-(1S,2S)-diastereomer using a biocatalytic reduction as the key step. Tetrahedron: Asymmetry (Elsevier BV). 2011, 22 (18–19): 1784–1789. ISSN 0957-4166. doi:10.1016/j.tetasy.2011.10.009.