紐曼-彭羅斯 ( NP )形式體系 [ 1] [ 2] 是由Ezra T. Newman和Roger Penrose 為廣義相對論 (GR) 發展出的一套記號體系。他們的記號體系試圖用旋量 記號來處理廣義相對論,從而引入了廣義相對論中通常使用的變量的復 數形式。 NP 形式體系本身是四元組形式體系的一個特例, [ 3] 在該體系中,理論中的張量被投影到時空每個點的完備矢量基上。通常選擇這個矢量基來反映時空的某種對稱性,從而簡化物理可觀測量的表達。對於 NP 形式體系,所選擇的矢量基是零四元組:一組四個零矢量——兩個實數,一個復共軛對。兩個實數成員通常漸近地指向徑向內側和徑向外側,並且該形式體系非常適合處理彎曲時空中的輻射傳播。通常使用由韋爾張量導出的韋爾純量。具體來說,可以證明其中一個純量——
Ψ
4
{\displaystyle \Psi _{4}}
在適當的框架中——編碼漸近平坦系統向外的引力輻射 。 [ 4]
紐曼和彭羅斯利用這個四元組引入了以下函數作為基本量: [ 1] [ 2]
十二個複雜的自旋係數(分為三組)描述了四元組從一個點到另一個點的變化:
κ
,
ρ
,
σ
,
τ
;
λ
,
μ
,
ν
,
π
;
ϵ
,
γ
,
β
,
α
.
{\displaystyle \kappa ,\rho ,\sigma ,\tau \,;\lambda ,\mu ,\nu ,\pi \,;\epsilon ,\gamma ,\beta ,\alpha .}
。
在四元組基中編碼 Weyl 張量的五個複函數:
Ψ
0
,
…
,
Ψ
4
{\displaystyle \Psi _{0},\ldots ,\Psi _{4}}
。
在四元組基中編碼Ricci 張量的 十個函數:
Φ
00
,
Φ
11
,
Φ
22
,
Λ
{\displaystyle \Phi _{00},\Phi _{11},\Phi _{22},\Lambda }
(真實的);
Φ
01
,
Φ
10
,
Φ
02
,
Φ
20
,
Φ
12
,
Φ
21
{\displaystyle \Phi _{01},\Phi _{10},\Phi _{02},\Phi _{20},\Phi _{12},\Phi _{21}}
(複雜的)。
在許多情況下——尤其是代數特殊時空或真空時空——紐曼-彭羅斯形式大大簡化,因為許多函數趨於零。與使用愛因斯坦方程的標準形式相比,這種簡化可以更容易地證明各種定理。
在本文中,我們將只採用張量 而非旋量 版本的 NP 形式,因為前者更容易理解並且在相關論文中更流行。關於這兩個版本的統一表述可以參考文獻 [ 5] 。
該形式體系是針對四維時空開發的,具有洛倫茲號型度規。在每個點上,引入一個四元組(四個矢量的集合)。前兩個矢量
ℓ
μ
{\displaystyle \ell ^{\mu }}
和
n
μ
{\displaystyle n^{\mu }}
只是一對標準(實)零矢量,
ℓ
a
n
a
=
−
1
{\displaystyle \ell ^{a}n_{a}=-1}
。例如,我們可以用球坐標來思考,並取
ℓ
a
{\displaystyle \ell ^{a}}
為傳出的零矢量,並且
n
a
{\displaystyle n^{a}}
成為進入的零矢量。然後通過組合一對實數、正交的單位空間矢量構造一個複數零矢量。對於球坐標,標準選擇是
m
μ
=
1
2
(
θ
^
+
i
ϕ
^
)
μ
.
{\displaystyle m^{\mu }={\frac {1}{\sqrt {2}}}\left({\hat {\theta }}+i{\hat {\phi }}\right)^{\mu }\ .}
該矢量的復共軛就構成了四元組的第四個元素。
NP 形式化使用了兩組簽名和規範化約定:
{
(
+
,
−
,
−
,
−
)
;
ℓ
a
n
a
=
1
,
m
a
m
¯
a
=
−
1
}
{\displaystyle \{(+,-,-,-);\ell ^{a}n_{a}=1\,,m^{a}{\bar {m}}_{a}=-1\}}
和
{
(
−
,
+
,
+
,
+
)
;
ℓ
a
n
a
=
−
1
,
m
a
m
¯
a
=
1
}
{\displaystyle \{(-,+,+,+);\ell ^{a}n_{a}=-1\,,m^{a}{\bar {m}}_{a}=1\}}
。前者是 NP 形式體系發展過程[ 1] [ 2] 中最初採用的[ 1] 方法,並在黑洞物理、引力波和廣義相對論的其他各個領域得到了廣泛的應用 。然而,當代從准局部視角研究黑洞時通常採用的是後一種慣例 (如孤立視界和動態視界 )。在本文中,我們將利用
{
(
−
,
+
,
+
,
+
)
;
ℓ
a
n
a
=
−
1
,
m
a
m
¯
a
=
1
}
{\displaystyle \{(-,+,+,+);\ell ^{a}n_{a}=-1\,,m^{a}{\bar {m}}_{a}=1\}}
對 NP 形式體系進行系統回顧(另見參考文獻[ 6] [ 7] in black-hole physics, gravitational waves and various other areas in general relativity. However, it is the latter convention that is usually employed in contemporary study of black holes from quasilocal perspectives[ 8] (such as isolated horizons[ 9] and dynamical horizons[ 10] [ 11] ). In this article, we will utilize
{
(
−
,
+
,
+
,
+
)
;
ℓ
a
n
a
=
−
1
,
m
a
m
¯
a
=
1
}
{\displaystyle \{(-,+,+,+);\ell ^{a}n_{a}=-1\,,m^{a}{\bar {m}}_{a}=1\}}
for a systematic review of the NP formalism (see also refs.[ 12] [ 13] [ 14] )。
需要注意的是,當從
{
(
+
,
−
,
−
,
−
)
,
ℓ
a
n
a
=
1
,
m
a
m
¯
a
=
−
1
}
{\displaystyle \{(+,-,-,-)\,,\ell ^{a}n_{a}=1\,,m^{a}{\bar {m}}_{a}=-1\}}
到
{
(
−
,
+
,
+
,
+
)
,
ℓ
a
n
a
=
−
1
,
m
a
m
¯
a
=
1
}
{\displaystyle \{(-,+,+,+)\,,\ell ^{a}n_{a}=-1\,,m^{a}{\bar {m}}_{a}=1\}}
、自旋係數的定義、Weyl-NP 純量
Ψ
i
{\displaystyle \Psi _{i}}
和 Ricci-NP 純量
Φ
i
j
{\displaystyle \Phi _{ij}}
需要改變它們的符號;這樣,愛因斯坦-麥克斯韋方程就可以保持不變。
在 NP 形式中,複數零四元組包含兩個實數零(余)矢量
{
ℓ
,
n
}
{\displaystyle \{\ell \,,n\}}
以及兩個複數零(余)矢量
{
m
,
m
¯
}
{\displaystyle \{m\,,{\bar {m}}\}}
。作為零 (余)矢量,自 歸一化
{
ℓ
,
n
}
{\displaystyle \{\ell \,,n\}}
自然消失,
ℓ
a
ℓ
a
=
n
a
n
a
=
m
a
m
a
=
m
¯
a
m
¯
a
=
0
,
{\displaystyle \ell _{a}\ell ^{a}=n_{a}n^{a}=m_{a}m^{a}={\bar {m}}_{a}{\bar {m}}^{a}=0,}
因此採用以下兩對交叉 規範化
ℓ
a
n
a
=
−
1
=
ℓ
a
n
a
,
m
a
m
¯
a
=
1
=
m
a
m
¯
a
,
{\displaystyle \ell _{a}n^{a}=-1=\ell ^{a}n_{a}\,,\quad m_{a}{\bar {m}}^{a}=1=m^{a}{\bar {m}}_{a}\,,}
而兩對之間的收縮也正在消失,
ℓ
a
m
a
=
ℓ
a
m
¯
a
=
n
a
m
a
=
n
a
m
¯
a
=
0.
{\displaystyle \ell _{a}m^{a}=\ell _{a}{\bar {m}}^{a}=n_{a}m^{a}=n_{a}{\bar {m}}^{a}=0.}
這裡的指數可以通過全球指標 來提高或降低
g
a
b
{\displaystyle g_{ab}}
可以通過以下方式獲得
g
a
b
=
−
ℓ
a
n
b
−
n
a
ℓ
b
+
m
a
m
¯
b
+
m
¯
a
m
b
,
g
a
b
=
−
ℓ
a
n
b
−
n
a
ℓ
b
+
m
a
m
¯
b
+
m
¯
a
m
b
.
{\displaystyle {\begin{aligned}g_{ab}&=-\ell _{a}n_{b}-n_{a}\ell _{b}+m_{a}{\bar {m}}_{b}+{\bar {m}}_{a}m_{b}\,,\\[1ex]g^{ab}&=-\ell ^{a}n^{b}-n^{a}\ell ^{b}+m^{a}{\bar {m}}^{b}+{\bar {m}}^{a}m^{b}\,.\end{aligned}}}
為了與形式體系對對象的每個組成部分使用不同的未索引符號的實踐保持一致,協變導數 運算符
∇
a
{\displaystyle \nabla _{a}}
使用四個獨立的符號來表示(
D
,
Δ
,
δ
,
δ
¯
{\displaystyle D,\Delta ,\delta ,{\bar {\delta }}}
) 為每個四元組方向命名一個方向 協變導 數算子。給定四元組矢量的線性組合,
X
a
=
a
ℓ
a
+
b
n
a
+
c
m
a
+
d
m
¯
a
{\displaystyle X^{a}=\mathrm {a} \ell ^{a}+\mathrm {b} n^{a}+\mathrm {c} m^{a}+\mathrm {d} {\bar {m}}^{a}}
,協變導數算子
X
a
{\displaystyle X^{a}}
方向是
∇
X
=
X
a
∇
a
=
(
a
D
+
b
Δ
+
c
δ
+
d
δ
¯
)
{\displaystyle \nabla _{X}=X^{a}\nabla _{a}=(\mathrm {a} D+\mathrm {b} \Delta +\mathrm {c} \delta +\mathrm {d} {\bar {\delta }})}
。
D
:=
∇
ℓ
=
ℓ
a
∇
a
,
Δ
:=
∇
n
=
n
a
∇
a
,
δ
:=
∇
m
=
m
a
∇
a
,
δ
¯
:=
∇
m
¯
=
m
¯
a
∇
a
,
{\displaystyle {\begin{aligned}D&:=\nabla _{\boldsymbol {\ell }}=\ell ^{a}\nabla _{a}\,,&\Delta &:=\nabla _{\boldsymbol {n}}=n^{a}\nabla _{a}\,,\\[1ex]\delta &:=\nabla _{\boldsymbol {m}}=m^{a}\nabla _{a}\,,&{\bar {\delta }}&:=\nabla _{\boldsymbol {\bar {m}}}={\bar {m}}^{a}\nabla _{a}\,,\end{aligned}}}
簡化為
D
=
ℓ
a
∂
a
,
Δ
=
n
a
∂
a
,
δ
=
m
a
∂
a
,
δ
¯
=
m
¯
a
∂
a
{\displaystyle D=\ell ^{a}\partial _{a}\,,\Delta =n^{a}\partial _{a}\,,\delta =m^{a}\partial _{a}\,,{\bar {\delta }}={\bar {m}}^{a}\partial _{a}}
當作用於純量 函數時。
在 NP 形式中,每個Ricci 旋轉 係數
γ
i
j
k
{\displaystyle \gamma _{ijk}}
在零四元組中分配了一個小寫的希臘字母,它們構成了 12 個複雜的自旋係數 (分為三組),
κ
:=
−
m
a
D
ℓ
a
=
−
m
a
ℓ
b
∇
b
ℓ
a
,
τ
:=
−
m
a
Δ
ℓ
a
=
−
m
a
n
b
∇
b
ℓ
a
,
σ
:=
−
m
a
δ
ℓ
a
=
−
m
a
m
b
∇
b
ℓ
a
,
ρ
:=
−
m
a
δ
¯
ℓ
a
=
−
m
a
m
¯
b
∇
b
ℓ
a
;
π
:=
m
¯
a
D
n
a
=
m
¯
a
ℓ
b
∇
b
n
a
,
ν
:=
m
¯
a
Δ
n
a
=
m
¯
a
n
b
∇
b
n
a
,
μ
:=
m
¯
a
δ
n
a
=
m
¯
a
m
b
∇
b
n
a
,
λ
:=
m
¯
a
δ
¯
n
a
=
m
¯
a
m
¯
b
∇
b
n
a
;
{\displaystyle {\begin{aligned}\kappa &:=-m^{a}D\ell _{a}=-m^{a}\ell ^{b}\nabla _{b}\ell _{a}\,,&\tau &:=-m^{a}\Delta \ell _{a}=-m^{a}n^{b}\nabla _{b}\ell _{a}\,,\\[1ex]\sigma &:=-m^{a}\delta \ell _{a}=-m^{a}m^{b}\nabla _{b}\ell _{a}\,,&\rho &:=-m^{a}{\bar {\delta }}\ell _{a}=-m^{a}{\bar {m}}^{b}\nabla _{b}\ell _{a}\,;\\[1ex]\pi &:={\bar {m}}^{a}Dn_{a}={\bar {m}}^{a}\ell ^{b}\nabla _{b}n_{a}\,,&\nu &:={\bar {m}}^{a}\Delta n_{a}={\bar {m}}^{a}n^{b}\nabla _{b}n_{a}\,,\\[1ex]\mu &:={\bar {m}}^{a}\delta n_{a}={\bar {m}}^{a}m^{b}\nabla _{b}n_{a}\,,&\lambda &:={\bar {m}}^{a}{\bar {\delta }}n_{a}={\bar {m}}^{a}{\bar {m}}^{b}\nabla _{b}n_{a}\,;\end{aligned}}}
ε
:=
−
1
2
(
n
a
D
ℓ
a
−
m
¯
a
D
m
a
)
=
−
1
2
(
n
a
ℓ
b
∇
b
ℓ
a
−
m
¯
a
ℓ
b
∇
b
m
a
)
,
γ
:=
−
1
2
(
n
a
Δ
ℓ
a
−
m
¯
a
Δ
m
a
)
=
−
1
2
(
n
a
n
b
∇
b
ℓ
a
−
m
¯
a
n
b
∇
b
m
a
)
,
β
:=
−
1
2
(
n
a
δ
ℓ
a
−
m
¯
a
δ
m
a
)
=
−
1
2
(
n
a
m
b
∇
b
ℓ
a
−
m
¯
a
m
b
∇
b
m
a
)
,
α
:=
−
1
2
(
n
a
δ
¯
ℓ
a
−
m
¯
a
δ
¯
m
a
)
=
−
1
2
(
n
a
m
¯
b
∇
b
ℓ
a
−
m
¯
a
m
¯
b
∇
b
m
a
)
.
{\displaystyle {\begin{aligned}\varepsilon &:=-{\tfrac {1}{2}}\left(n^{a}D\ell _{a}-{\bar {m}}^{a}Dm_{a}\right)=-{\tfrac {1}{2}}\left(n^{a}\ell ^{b}\nabla _{b}\ell _{a}-{\bar {m}}^{a}\ell ^{b}\nabla _{b}m_{a}\right)\,,\\[1ex]\gamma &:=-{\tfrac {1}{2}}\left(n^{a}\Delta \ell _{a}-{\bar {m}}^{a}\Delta m_{a}\right)=-{\tfrac {1}{2}}\left(n^{a}n^{b}\nabla _{b}\ell _{a}-{\bar {m}}^{a}n^{b}\nabla _{b}m_{a}\right)\,,\\[1ex]\beta &:=-{\tfrac {1}{2}}\left(n^{a}\delta \ell _{a}-{\bar {m}}^{a}\delta m_{a}\right)=-{\tfrac {1}{2}}\left(n^{a}m^{b}\nabla _{b}\ell _{a}-{\bar {m}}^{a}m^{b}\nabla _{b}m_{a}\right)\,,\\[1ex]\alpha &:=-{\tfrac {1}{2}}\left(n^{a}{\bar {\delta }}\ell _{a}-{\bar {m}}^{a}{\bar {\delta }}m_{a}\right)=-{\tfrac {1}{2}}\left(n^{a}{\bar {m}}^{b}\nabla _{b}\ell _{a}-{\bar {m}}^{a}{\bar {m}}^{b}\nabla _{b}m_{a}\right)\,.\end{aligned}}}
自旋係數是 NP 形式中的主要量,所有其他 NP 量(如下所定義)都可以利用 NP 場方程間接計算。因此,NP 形式有時也稱為自旋係數形式 。
四元組矢量的十六個方向協變導數有時被稱為傳輸/傳播方程, [來源請求] 可能是因為當四元組矢量沿導數算子方向平行傳播或傳輸時,導數為零。
O'Donnell 給出了以這種精確符號表示的結果: :57–58(3.220)
D
ℓ
a
=
(
ε
+
ε
¯
)
ℓ
a
−
κ
¯
m
a
−
κ
m
¯
a
,
Δ
ℓ
a
=
(
γ
+
γ
¯
)
ℓ
a
−
τ
¯
m
a
−
τ
m
¯
a
,
δ
ℓ
a
=
(
α
¯
+
β
)
ℓ
a
−
ρ
¯
m
a
−
σ
m
¯
a
,
δ
¯
ℓ
a
=
(
α
+
β
¯
)
ℓ
a
−
σ
¯
m
a
−
ρ
m
¯
a
;
{\displaystyle {\begin{aligned}D\ell ^{a}&=\left(\varepsilon +{\bar {\varepsilon }}\right)\ell ^{a}-{\bar {\kappa }}m^{a}-\kappa {\bar {m}}^{a}\,,\\[1ex]\Delta \ell ^{a}&=\left(\gamma +{\bar {\gamma }}\right)\ell ^{a}-{\bar {\tau }}m^{a}-\tau {\bar {m}}^{a}\,,\\[1ex]\delta \ell ^{a}&=\left({\bar {\alpha }}+\beta \right)\ell ^{a}-{\bar {\rho }}m^{a}-\sigma {\bar {m}}^{a}\,,\\[1ex]{\bar {\delta }}\ell ^{a}&=\left(\alpha +{\bar {\beta }}\right)\ell ^{a}-{\bar {\sigma }}m^{a}-\rho {\bar {m}}^{a}\,;\end{aligned}}}
D
n
a
=
π
m
a
+
π
¯
m
¯
a
−
(
ε
+
ε
¯
)
n
a
,
Δ
n
a
=
ν
m
a
+
ν
¯
m
¯
a
−
(
γ
+
γ
¯
)
n
a
,
δ
n
a
=
μ
m
a
+
λ
¯
m
¯
a
−
(
α
¯
+
β
)
n
a
,
δ
¯
n
a
=
λ
m
a
+
μ
¯
m
¯
a
−
(
α
+
β
¯
)
n
a
;
{\displaystyle {\begin{aligned}Dn^{a}&=\pi m^{a}+{\bar {\pi }}{\bar {m}}^{a}-\left(\varepsilon +{\bar {\varepsilon }}\right)n^{a}\,,\\[1ex]\Delta n^{a}&=\nu m^{a}+{\bar {\nu }}{\bar {m}}^{a}-\left(\gamma +{\bar {\gamma }}\right)n^{a}\,,\\[1ex]\delta n^{a}&=\mu m^{a}+{\bar {\lambda }}{\bar {m}}^{a}-\left({\bar {\alpha }}+\beta \right)n^{a}\,,\\[1ex]{\bar {\delta }}n^{a}&=\lambda m^{a}+{\bar {\mu }}{\bar {m}}^{a}-\left(\alpha +{\bar {\beta }}\right)n^{a}\,;\end{aligned}}}
D
m
a
=
(
ε
−
ε
¯
)
m
a
+
π
¯
ℓ
a
−
κ
n
a
,
Δ
m
a
=
(
γ
−
γ
¯
)
m
a
+
ν
¯
ℓ
a
−
τ
n
a
,
δ
m
a
=
(
β
−
α
¯
)
m
a
+
λ
¯
ℓ
a
−
σ
n
a
,
δ
¯
m
a
=
(
α
−
β
¯
)
m
a
+
μ
¯
ℓ
a
−
ρ
n
a
;
{\displaystyle {\begin{aligned}Dm^{a}&=\left(\varepsilon -{\bar {\varepsilon }}\right)m^{a}+{\bar {\pi }}\ell ^{a}-\kappa n^{a}\,,\\[1ex]\Delta m^{a}&=\left(\gamma -{\bar {\gamma }}\right)m^{a}+{\bar {\nu }}\ell ^{a}-\tau n^{a}\,,\\[1ex]\delta m^{a}&=\left(\beta -{\bar {\alpha }}\right)m^{a}+{\bar {\lambda }}\ell ^{a}-\sigma n^{a}\,,\\[1ex]{\bar {\delta }}m^{a}&=\left(\alpha -{\bar {\beta }}\right)m^{a}+{\bar {\mu }}\ell ^{a}-\rho n^{a}\,;\end{aligned}}}
D
m
¯
a
=
(
ε
¯
−
ε
)
m
¯
a
+
π
ℓ
a
−
κ
¯
n
a
,
Δ
m
¯
a
=
(
γ
¯
−
γ
)
m
¯
a
+
ν
ℓ
a
−
τ
¯
n
a
,
δ
m
¯
a
=
(
α
¯
−
β
)
m
¯
a
+
μ
ℓ
a
−
ρ
¯
n
a
,
δ
¯
m
¯
a
=
(
β
¯
−
α
)
m
¯
a
+
λ
ℓ
a
−
σ
¯
n
a
.
{\displaystyle {\begin{aligned}D{\bar {m}}^{a}&=\left({\bar {\varepsilon }}-\varepsilon \right){\bar {m}}^{a}+\pi \ell ^{a}-{\bar {\kappa }}n^{a}\,,\\[1ex]\Delta {\bar {m}}^{a}&=\left({\bar {\gamma }}-\gamma \right){\bar {m}}^{a}+\nu \ell ^{a}-{\bar {\tau }}n^{a}\,,\\[1ex]\delta {\bar {m}}^{a}&=\left({\bar {\alpha }}-\beta \right){\bar {m}}^{a}+\mu \ell ^{a}-{\bar {\rho }}n^{a}\,,\\[1ex]{\bar {\delta }}{\bar {m}}^{a}&=\left({\bar {\beta }}-\alpha \right){\bar {m}}^{a}+\lambda \ell ^{a}-{\bar {\sigma }}n^{a}\,.\end{aligned}}}
從Dℓ a 和 Δ n a 解釋κ 、 ε 、 ν 、 γ [ 編輯 ]
實零四元組矢量在其自身方向上的協變導數的兩個方程表明該矢量是否與測地線相切,如果是,則表明測地線是否具有仿射參數。
零切矢量
T
a
{\displaystyle T^{a}}
如果
T
b
∇
b
T
a
=
0
{\displaystyle T^{b}\nabla _{b}T^{a}=0}
,也就是說,如果矢量沿其自身方向平行傳播或傳輸,則矢量不會發生變化。 [ 15] :41(3.3.1)
D
ℓ
a
=
(
ε
+
ε
¯
)
ℓ
a
−
κ
¯
m
a
−
κ
m
¯
a
{\displaystyle D\ell ^{a}=(\varepsilon +{\bar {\varepsilon }})\ell ^{a}-{\bar {\kappa }}m^{a}-\kappa {\bar {m}}^{a}}
表明
ℓ
a
{\displaystyle \ell ^{a}}
與測地線相切若且唯若
κ
=
0
{\displaystyle \kappa =0}
並且與仿射參數化測地線相切,如果另外
(
ε
+
ε
¯
)
=
0
{\displaystyle (\varepsilon +{\bar {\varepsilon }})=0}
。相似地,
Δ
n
a
=
ν
m
a
+
ν
¯
m
¯
a
−
(
γ
+
γ
¯
)
n
a
{\displaystyle \Delta n^{a}=\nu m^{a}+{\bar {\nu }}{\bar {m}}^{a}-(\gamma +{\bar {\gamma }})n^{a}}
表明
n
a
{\displaystyle n^{a}}
是測地線若且唯若
ν
=
0
{\displaystyle \nu =0}
,並且具有仿射參數化
(
γ
+
γ
¯
)
=
0
{\displaystyle (\gamma +{\bar {\gamma }})=0}
。
(複雜的無效四分體載體
m
a
=
x
a
+
i
y
a
{\displaystyle m^{a}=x^{a}+iy^{a}}
和
m
¯
a
=
x
a
−
i
y
a
{\displaystyle {\bar {m}}^{a}=x^{a}-iy^{a}}
必須分離成類空基矢量
x
a
{\displaystyle x^{a}}
和
y
a
{\displaystyle y^{a}}
然後詢問其中一個或兩個是否與類空測地線相切。)
協變導數的度量兼容性或無扭轉性 被重鑄為方向導數的對易子 ,
Δ
D
−
D
Δ
=
(
γ
+
γ
¯
)
D
+
(
ε
+
ε
¯
)
Δ
−
(
τ
¯
+
π
)
δ
−
(
τ
+
π
¯
)
δ
¯
,
δ
D
−
D
δ
=
(
α
¯
+
β
−
π
¯
)
D
+
κ
Δ
−
(
ρ
¯
+
ε
−
ε
¯
)
δ
−
σ
δ
¯
,
δ
Δ
−
Δ
δ
=
−
ν
¯
D
+
(
τ
−
α
¯
−
β
)
Δ
+
(
μ
−
γ
+
γ
¯
)
δ
+
λ
¯
δ
¯
,
δ
¯
δ
−
δ
δ
¯
=
(
μ
¯
−
μ
)
D
+
(
ρ
¯
−
ρ
)
Δ
+
(
α
−
β
¯
)
δ
−
(
α
¯
−
β
)
δ
¯
,
{\displaystyle {\begin{aligned}\Delta D-D\Delta &=\left(\gamma +{\bar {\gamma }}\right)D+\left(\varepsilon +{\bar {\varepsilon }}\right)\Delta -\left({\bar {\tau }}+\pi \right)\delta -\left(\tau +{\bar {\pi }}\right){\bar {\delta }}\,,\\[1ex]\delta D-D\delta &=\left({\bar {\alpha }}+\beta -{\bar {\pi }}\right)D+\kappa \Delta -\left({\bar {\rho }}+\varepsilon -{\bar {\varepsilon }}\right)\delta -\sigma {\bar {\delta }}\,,\\[1ex]\delta \Delta -\Delta \delta &=-{\bar {\nu }}D+\left(\tau -{\bar {\alpha }}-\beta \right)\Delta +\left(\mu -\gamma +{\bar {\gamma }}\right)\delta +{\bar {\lambda }}{\bar {\delta }}\,,\\[1ex]{\bar {\delta }}\delta -\delta {\bar {\delta }}&=\left({\bar {\mu }}-\mu \right)D+\left({\bar {\rho }}-\rho \right)\Delta +\left(\alpha -{\bar {\beta }}\right)\delta -\left({\bar {\alpha }}-\beta \right){\bar {\delta }}\,,\end{aligned}}}
這意味著
Δ
ℓ
a
−
D
n
a
=
(
γ
+
γ
¯
)
ℓ
a
+
(
ε
+
ε
¯
)
n
a
−
(
τ
¯
+
π
)
m
a
−
(
τ
+
π
¯
)
m
¯
a
,
δ
ℓ
a
−
D
m
a
=
(
α
¯
+
β
−
π
¯
)
ℓ
a
+
κ
n
a
−
(
ρ
¯
+
ε
−
ε
¯
)
m
a
−
σ
m
¯
a
,
δ
n
a
−
Δ
m
a
=
−
ν
¯
ℓ
a
+
(
τ
−
α
¯
−
β
)
n
a
+
(
μ
−
γ
+
γ
¯
)
m
a
+
λ
¯
m
¯
a
,
δ
¯
m
a
−
δ
m
¯
a
=
(
μ
¯
−
μ
)
ℓ
a
+
(
ρ
¯
−
ρ
)
n
a
+
(
α
−
β
¯
)
m
a
−
(
α
¯
−
β
)
m
¯
a
.
{\displaystyle {\begin{aligned}\Delta \ell ^{a}-Dn^{a}&=\left(\gamma +{\bar {\gamma }}\right)\ell ^{a}+\left(\varepsilon +{\bar {\varepsilon }}\right)n^{a}-\left({\bar {\tau }}+\pi \right)m^{a}-\left(\tau +{\bar {\pi }}\right){\bar {m}}^{a}\,,\\[1ex]\delta \ell ^{a}-Dm^{a}&=\left({\bar {\alpha }}+\beta -{\bar {\pi }}\right)\ell ^{a}+\kappa n^{a}-\left({\bar {\rho }}+\varepsilon -{\bar {\varepsilon }}\right)m^{a}-\sigma {\bar {m}}^{a}\,,\\[1ex]\delta n^{a}-\Delta m^{a}&=-{\bar {\nu }}\ell ^{a}+\left(\tau -{\bar {\alpha }}-\beta \right)n^{a}+\left(\mu -\gamma +{\bar {\gamma }}\right)m^{a}+{\bar {\lambda }}{\bar {m}}^{a}\,,\\[1ex]{\bar {\delta }}m^{a}-\delta {\bar {m}}^{a}&=\left({\bar {\mu }}-\mu \right)\ell ^{a}+\left({\bar {\rho }}-\rho \right)n^{a}+\left(\alpha -{\bar {\beta }}\right)m^{a}-\left({\bar {\alpha }}-\beta \right){\bar {m}}^{a}\,.\end{aligned}}}
注意:(i)上述方程既可以看作對易子的蘊涵,也可以看作運輸方程的組合;(ii)在這些隱含方程中,矢量
{
ℓ
a
,
n
a
,
m
a
,
m
¯
a
}
{\displaystyle \{\ell ^{a},n^{a},m^{a},{\bar {m}}^{a}\}}
可以用余矢量代替,方程仍然成立。
Weyl–NP 和 Ricci–NP 純量[ 編輯 ]
Weyl 張量的 10 個獨立分量可以編碼為 5 個複數Weyl-NP 純量,
Ψ
0
:=
C
a
b
c
d
ℓ
a
m
b
ℓ
c
m
d
,
Ψ
1
:=
C
a
b
c
d
ℓ
a
n
b
ℓ
c
m
d
,
Ψ
2
:=
C
a
b
c
d
ℓ
a
m
b
m
¯
c
n
d
,
Ψ
3
:=
C
a
b
c
d
ℓ
a
n
b
m
¯
c
n
d
,
Ψ
4
:=
C
a
b
c
d
n
a
m
¯
b
n
c
m
¯
d
.
{\displaystyle {\begin{aligned}\Psi _{0}&:=C_{abcd}\ell ^{a}m^{b}\ell ^{c}m^{d}\,,&\Psi _{1}&:=C_{abcd}\ell ^{a}n^{b}\ell ^{c}m^{d}\,,\\\Psi _{2}&:=C_{abcd}\ell ^{a}m^{b}{\bar {m}}^{c}n^{d}\,,&\Psi _{3}&:=C_{abcd}\ell ^{a}n^{b}{\bar {m}}^{c}n^{d}\,,\\\Psi _{4}&:=C_{abcd}n^{a}{\bar {m}}^{b}n^{c}{\bar {m}}^{d}\,.\end{aligned}}}
Ricci 張量 的 10 個獨立分量被編碼為 4 個實 純量
{
Φ
00
{\displaystyle \{\Phi _{00}}
,
Φ
11
{\displaystyle \Phi _{11}}
,
Φ
22
{\displaystyle \Phi _{22}}
,
Λ
}
{\displaystyle \Lambda \}}
和 3 個複數 純量
{
Φ
10
,
Φ
20
,
Φ
21
}
{\displaystyle \{\Phi _{10},\Phi _{20},\Phi _{21}\}}
(及其復共軛),
Φ
00
:=
1
2
R
a
b
ℓ
a
ℓ
b
,
Φ
11
:=
1
4
R
a
b
(
ℓ
a
n
b
+
m
a
m
¯
b
)
,
Φ
22
:=
1
2
R
a
b
n
a
n
b
,
Λ
:=
1
24
R
;
{\displaystyle {\begin{aligned}\Phi _{00}&:={\tfrac {1}{2}}R_{ab}\ell ^{a}\ell ^{b}\,,&\Phi _{11}&:={\tfrac {1}{4}}R_{ab}\left(\ell ^{a}n^{b}+m^{a}{\bar {m}}^{b}\right),\\[1ex]\Phi _{22}&:={\tfrac {1}{2}}R_{ab}n^{a}n^{b}\,,&\Lambda &:={\tfrac {1}{24}}R\,;\end{aligned}}}
Φ
01
:=
1
2
R
a
b
ℓ
a
m
b
,
Φ
10
:=
1
2
R
a
b
ℓ
a
m
¯
b
=
Φ
01
¯
,
Φ
02
:=
1
2
R
a
b
m
a
m
b
,
Φ
20
:=
1
2
R
a
b
m
¯
a
m
¯
b
=
Φ
02
¯
,
Φ
12
:=
1
2
R
a
b
m
a
n
b
,
Φ
21
:=
1
2
R
a
b
m
¯
a
n
b
=
Φ
12
¯
.
{\displaystyle {\begin{aligned}\Phi _{01}&:={\tfrac {1}{2}}R_{ab}\ell ^{a}m^{b}\,,&\Phi _{10}&:={\tfrac {1}{2}}R_{ab}\ell ^{a}{\bar {m}}^{b}={\overline {\Phi _{01}}}\,,\\\Phi _{02}&:={\tfrac {1}{2}}R_{ab}m^{a}m^{b}\,,&\Phi _{20}&:={\tfrac {1}{2}}R_{ab}{\bar {m}}^{a}{\bar {m}}^{b}={\overline {\Phi _{02}}}\,,\\\Phi _{12}&:={\tfrac {1}{2}}R_{ab}m^{a}n^{b}\,,&\Phi _{21}&:={\tfrac {1}{2}}R_{ab}{\bar {m}}^{a}n^{b}={\overline {\Phi _{12}}}\,.\end{aligned}}}
在這些定義中,
R
a
b
{\displaystyle R_{ab}}
可以用其無痕 部分代替
Q
a
b
=
R
a
b
−
1
4
g
a
b
R
{\textstyle Q_{ab}=R_{ab}-{\tfrac {1}{4}}g_{ab}R}
或愛因斯坦張量
G
a
b
=
R
a
b
−
1
2
g
a
b
R
{\textstyle G_{ab}=R_{ab}-{\tfrac {1}{2}}g_{ab}R}
因為關係正常化。還,
Φ
11
{\displaystyle \Phi _{11}}
簡化為
Φ
11
=
1
2
R
a
b
ℓ
a
n
b
=
1
2
R
a
b
m
a
m
¯
b
{\textstyle \Phi _{11}={\tfrac {1}{2}}R_{ab}\ell ^{a}n^{b}={\tfrac {1}{2}}R_{ab}m^{a}{\bar {m}}^{b}}
用於電真空(
Λ
=
0
{\displaystyle \Lambda =0}
)。
在復零四元組中,里奇恆等式產生下列 NP 場方程,連接自旋係數、Weyl-NP 和 Ricci-NP 純量(回想一下,在正交四元組中,里奇旋轉係數將遵循嘉當第一和第二結構方程),
各種符號的這些方程可以在多篇文獻中找到。 [ 3] :46–47(310(a)-(r)) :671–672(E.12) Frolov 和 Novikov [ 13] 中的符號相同。
D
ρ
−
δ
¯
κ
=
(
ρ
2
+
σ
σ
¯
)
+
(
ε
+
ε
¯
)
ρ
−
κ
¯
τ
−
κ
(
3
α
+
β
¯
−
π
)
+
Φ
00
,
D
σ
−
δ
κ
=
(
ρ
+
ρ
¯
)
σ
+
(
3
ε
−
ε
¯
)
σ
−
(
τ
−
π
¯
+
α
¯
+
3
β
)
κ
+
Ψ
0
,
D
τ
−
Δ
κ
=
(
τ
+
π
¯
)
ρ
+
(
τ
¯
+
π
)
σ
+
(
ε
−
ε
¯
)
τ
−
(
3
γ
+
γ
¯
)
κ
+
Ψ
1
+
Φ
01
,
D
α
−
δ
¯
ε
=
(
ρ
+
ε
¯
−
2
ε
)
α
+
β
σ
¯
−
β
¯
ε
−
κ
λ
−
κ
¯
γ
+
(
ε
+
ρ
)
π
+
Φ
10
,
D
β
−
δ
ε
=
(
α
+
π
)
σ
+
(
ρ
¯
−
ε
¯
)
β
−
(
μ
+
γ
)
κ
−
(
α
¯
−
π
¯
)
ε
+
Ψ
1
,
D
γ
−
Δ
ε
=
(
τ
+
π
¯
)
α
+
(
τ
¯
+
π
)
β
−
(
ε
+
ε
¯
)
γ
−
(
γ
+
γ
¯
)
ε
+
τ
π
−
ν
κ
+
Ψ
2
+
Φ
11
−
Λ
,
D
λ
−
δ
¯
π
=
(
ρ
λ
+
σ
¯
μ
)
+
π
2
+
(
α
−
β
¯
)
π
−
ν
κ
¯
−
(
3
ε
−
ε
¯
)
λ
+
Φ
20
,
D
μ
−
δ
π
=
(
ρ
¯
μ
+
σ
λ
)
+
π
π
¯
−
(
ε
+
ε
¯
)
μ
−
(
α
¯
−
β
)
π
−
ν
κ
+
Ψ
2
+
2
Λ
,
D
ν
−
Δ
π
=
(
π
+
τ
¯
)
μ
+
(
π
¯
+
τ
)
λ
+
(
γ
−
γ
¯
)
π
−
(
3
ε
+
ε
¯
)
ν
+
Ψ
3
+
Φ
21
,
Δ
λ
−
δ
¯
ν
=
−
(
μ
+
μ
¯
)
λ
−
(
3
γ
−
γ
¯
)
λ
+
(
3
α
+
β
¯
+
π
−
τ
¯
)
ν
−
Ψ
4
,
δ
ρ
−
δ
¯
σ
=
ρ
(
α
¯
+
β
)
−
σ
(
3
α
−
β
¯
)
+
(
ρ
−
ρ
¯
)
τ
+
(
μ
−
μ
¯
)
κ
−
Ψ
1
+
Φ
01
,
δ
α
−
δ
¯
β
=
(
μ
ρ
−
λ
σ
)
+
α
α
¯
+
β
β
¯
−
2
α
β
+
γ
(
ρ
−
ρ
¯
)
+
ε
(
μ
−
μ
¯
)
−
Ψ
2
+
Φ
11
+
Λ
,
δ
λ
−
δ
¯
μ
=
(
ρ
−
ρ
¯
)
ν
+
(
μ
−
μ
¯
)
π
+
(
α
+
β
¯
)
μ
+
(
α
¯
−
3
β
)
λ
−
Ψ
3
+
Φ
21
,
δ
ν
−
Δ
μ
=
(
μ
2
+
λ
λ
¯
)
+
(
γ
+
γ
¯
)
μ
−
ν
¯
π
+
(
τ
−
3
β
−
α
¯
)
ν
+
Φ
22
,
δ
γ
−
Δ
β
=
(
τ
−
α
¯
−
β
)
γ
+
μ
τ
−
σ
ν
−
ε
ν
¯
−
(
γ
−
γ
¯
−
μ
)
β
+
α
λ
¯
+
Φ
12
,
δ
τ
−
Δ
σ
=
(
μ
σ
+
λ
¯
ρ
)
+
(
τ
+
β
−
α
¯
)
τ
−
(
3
γ
−
γ
¯
)
σ
−
κ
ν
¯
+
Φ
02
,
Δ
ρ
−
δ
¯
τ
=
−
(
ρ
μ
¯
+
σ
λ
)
+
(
β
¯
−
α
−
τ
¯
)
τ
+
(
γ
+
γ
¯
)
ρ
+
ν
κ
−
Ψ
2
−
2
Λ
,
Δ
α
−
δ
¯
γ
=
(
ρ
+
ε
)
ν
−
(
τ
+
β
)
λ
+
(
γ
¯
−
μ
¯
)
α
+
(
β
¯
−
τ
¯
)
γ
−
Ψ
3
.
{\displaystyle {\begin{aligned}D\rho -{\bar {\delta }}\kappa &=(\rho ^{2}+\sigma {\bar {\sigma }})+(\varepsilon +{\bar {\varepsilon }})\rho -{\bar {\kappa }}\tau -\kappa (3\alpha +{\bar {\beta }}-\pi )+\Phi _{00}\,,\\[1ex]D\sigma -\delta \kappa &=(\rho +{\bar {\rho }})\sigma +(3\varepsilon -{\bar {\varepsilon }})\sigma -(\tau -{\bar {\pi }}+{\bar {\alpha }}+3\beta )\kappa +\Psi _{0}\,,\\[1ex]D\tau -\Delta \kappa &=(\tau +{\bar {\pi }})\rho +({\bar {\tau }}+\pi )\sigma +(\varepsilon -{\bar {\varepsilon }})\tau -(3\gamma +{\bar {\gamma }})\kappa +\Psi _{1}+\Phi _{01}\,,\\[1ex]D\alpha -{\bar {\delta }}\varepsilon &=(\rho +{\bar {\varepsilon }}-2\varepsilon )\alpha +\beta {\bar {\sigma }}-{\bar {\beta }}\varepsilon -\kappa \lambda -{\bar {\kappa }}\gamma +(\varepsilon +\rho )\pi +\Phi _{10}\,,\\[1ex]D\beta -\delta \varepsilon &=(\alpha +\pi )\sigma +({\bar {\rho }}-{\bar {\varepsilon }})\beta -(\mu +\gamma )\kappa -({\bar {\alpha }}-{\bar {\pi }})\varepsilon +\Psi _{1}\,,\\[1ex]D\gamma -\Delta \varepsilon &=(\tau +{\bar {\pi }})\alpha +({\bar {\tau }}+\pi )\beta -(\varepsilon +{\bar {\varepsilon }})\gamma -(\gamma +{\bar {\gamma }})\varepsilon +\tau \pi -\nu \kappa +\Psi _{2}+\Phi _{11}-\Lambda \,,\\[1ex]D\lambda -{\bar {\delta }}\pi &=(\rho \lambda +{\bar {\sigma }}\mu )+\pi ^{2}+(\alpha -{\bar {\beta }})\pi -\nu {\bar {\kappa }}-(3\varepsilon -{\bar {\varepsilon }})\lambda +\Phi _{20}\,,\\[1ex]D\mu -\delta \pi &=({\bar {\rho }}\mu +\sigma \lambda )+\pi {\bar {\pi }}-(\varepsilon +{\bar {\varepsilon }})\mu -({\bar {\alpha }}-\beta )\pi -\nu \kappa +\Psi _{2}+2\Lambda \,,\\[1ex]D\nu -\Delta \pi &=(\pi +{\bar {\tau }})\mu +({\bar {\pi }}+\tau )\lambda +(\gamma -{\bar {\gamma }})\pi -(3\varepsilon +{\bar {\varepsilon }})\nu +\Psi _{3}+\Phi _{21}\,,\\[1ex]\Delta \lambda -{\bar {\delta }}\nu &=-(\mu +{\bar {\mu }})\lambda -(3\gamma -{\bar {\gamma }})\lambda +(3\alpha +{\bar {\beta }}+\pi -{\bar {\tau }})\nu -\Psi _{4}\,,\\[1ex]\delta \rho -{\bar {\delta }}\sigma &=\rho ({\bar {\alpha }}+\beta )-\sigma (3\alpha -{\bar {\beta }})+(\rho -{\bar {\rho }})\tau +(\mu -{\bar {\mu }})\kappa -\Psi _{1}+\Phi _{01}\,,\\[1ex]\delta \alpha -{\bar {\delta }}\beta &=(\mu \rho -\lambda \sigma )+\alpha {\bar {\alpha }}+\beta {\bar {\beta }}-2\alpha \beta +\gamma (\rho -{\bar {\rho }})+\varepsilon (\mu -{\bar {\mu }})-\Psi _{2}+\Phi _{11}+\Lambda \,,\\[1ex]\delta \lambda -{\bar {\delta }}\mu &=(\rho -{\bar {\rho }})\nu +(\mu -{\bar {\mu }})\pi +(\alpha +{\bar {\beta }})\mu +({\bar {\alpha }}-3\beta )\lambda -\Psi _{3}+\Phi _{21}\,,\\[1ex]\delta \nu -\Delta \mu &=(\mu ^{2}+\lambda {\bar {\lambda }})+(\gamma +{\bar {\gamma }})\mu -{\bar {\nu }}\pi +(\tau -3\beta -{\bar {\alpha }})\nu +\Phi _{22}\,,\\[1ex]\delta \gamma -\Delta \beta &=(\tau -{\bar {\alpha }}-\beta )\gamma +\mu \tau -\sigma \nu -\varepsilon {\bar {\nu }}-(\gamma -{\bar {\gamma }}-\mu )\beta +\alpha {\bar {\lambda }}+\Phi _{12}\,,\\[1ex]\delta \tau -\Delta \sigma &=(\mu \sigma +{\bar {\lambda }}\rho )+(\tau +\beta -{\bar {\alpha }})\tau -(3\gamma -{\bar {\gamma }})\sigma -\kappa {\bar {\nu }}+\Phi _{02}\,,\\[1ex]\Delta \rho -{\bar {\delta }}\tau &=-(\rho {\bar {\mu }}+\sigma \lambda )+({\bar {\beta }}-\alpha -{\bar {\tau }})\tau +(\gamma +{\bar {\gamma }})\rho +\nu \kappa -\Psi _{2}-2\Lambda \,,\\[1ex]\Delta \alpha -{\bar {\delta }}\gamma &=(\rho +\varepsilon )\nu -(\tau +\beta )\lambda +({\bar {\gamma }}-{\bar {\mu }})\alpha +({\bar {\beta }}-{\bar {\tau }})\gamma -\Psi _{3}\,.\end{aligned}}}
此外,Weyl-NP純量
Ψ
i
{\displaystyle \Psi _{i}}
和 Ricci-NP 純量
Φ
i
j
{\displaystyle \Phi _{ij}}
可以在獲得自旋係數後,從上述 NP 場方程間接計算出來,而不必直接使用它們的定義。
麥克斯韋–NP 純量、NP 形式中的麥克斯韋方程[ 編輯 ]
法拉第-麥克斯韋2形式的六個獨立分量(即電磁場強度張量 )
F
a
b
{\displaystyle F_{ab}}
可以編碼成三個複數 Maxwell-NP 純量
ϕ
0
:=
F
a
b
ℓ
a
m
b
,
ϕ
1
:=
1
2
F
a
b
(
ℓ
a
n
b
+
m
¯
a
m
b
)
,
ϕ
2
:=
F
a
b
m
¯
a
n
b
,
{\displaystyle \phi _{0}:=F_{ab}\ell ^{a}m^{b}\,,\quad \phi _{1}:={\tfrac {1}{2}}F_{ab}\left(\ell ^{a}n^{b}+{\bar {m}}^{a}m^{b}\right),\quad \phi _{2}:=F_{ab}{\bar {m}}^{a}n^{b}\,,}
因此八個實麥克斯韋方程
d
F
=
0
{\displaystyle d\mathbf {F} =0}
和
d
⋆
F
=
0
{\displaystyle d^{\star }\mathbf {F} =0}
(作為
F
=
d
A
{\displaystyle \mathbf {F} =dA}
)可以轉化為四個複方程,
D
ϕ
1
−
δ
¯
ϕ
0
=
(
π
−
2
α
)
ϕ
0
+
2
ρ
ϕ
1
−
κ
ϕ
2
,
D
ϕ
2
−
δ
¯
ϕ
1
=
−
λ
ϕ
0
+
2
π
ϕ
1
+
(
ρ
−
2
ε
)
ϕ
2
,
Δ
ϕ
0
−
δ
ϕ
1
=
(
2
γ
−
μ
)
ϕ
0
−
2
τ
ϕ
1
+
σ
ϕ
2
,
Δ
ϕ
1
−
δ
ϕ
2
=
ν
ϕ
0
−
2
μ
ϕ
1
+
(
2
β
−
τ
)
ϕ
2
,
{\displaystyle {\begin{aligned}D\phi _{1}-{\bar {\delta }}\phi _{0}&=(\pi -2\alpha )\phi _{0}+2\rho \phi _{1}-\kappa \phi _{2}\,,\\[1ex]D\phi _{2}-{\bar {\delta }}\phi _{1}&=-\lambda \phi _{0}+2\pi \phi _{1}+(\rho -2\varepsilon )\phi _{2}\,,\\[1ex]\Delta \phi _{0}-\delta \phi _{1}&=(2\gamma -\mu )\phi _{0}-2\tau \phi _{1}+\sigma \phi _{2}\,,\\[1ex]\Delta \phi _{1}-\delta \phi _{2}&=\nu \phi _{0}-2\mu \phi _{1}+(2\beta -\tau )\phi _{2}\,,\end{aligned}}}
使用 Ricci-NP 純量
Φ
i
j
{\displaystyle \Phi _{ij}}
與麥克斯韋純量相關
Φ
i
j
=
2
ϕ
i
ϕ
j
¯
,
(
i
,
j
∈
{
0
,
1
,
2
}
)
.
{\displaystyle \Phi _{ij}=\,2\,\phi _{i}\,{\overline {\phi _{j}}}\,,\quad (i,j\in \{0,1,2\})\,.}
值得指出的是,補充方程
Φ
i
j
=
2
ϕ
i
ϕ
j
¯
{\displaystyle \Phi _{ij}=2\,\phi _{i}\,{\overline {\phi _{j}}}}
只對電磁場有效;例如,在楊-米爾斯場的情況下,
Φ
i
j
=
Tr
(
ϝ
i
ϝ
¯
j
)
{\displaystyle \Phi _{ij}=\,{\text{Tr}}\,(\digamma _{i}\,{\bar {\digamma }}_{j})}
在哪裡
ϝ
i
(
i
∈
{
0
,
1
,
2
}
)
{\displaystyle \digamma _{i}(i\in \{0,1,2\})}
是 Yang-Mills-NP 純量。
綜上所述,上述傳輸方程、NP場方程和麥克斯韋-NP方程共同構成了紐曼-彭羅斯形式中的愛因斯坦-麥克斯韋方程。
Weyl 純量
Ψ
4
{\displaystyle \Psi _{4}}
Newman & Penrose 將其定義為
Ψ
4
=
−
C
α
β
γ
δ
n
α
m
¯
β
n
γ
m
¯
δ
{\displaystyle \Psi _{4}=-C_{\alpha \beta \gamma \delta }n^{\alpha }{\bar {m}}^{\beta }n^{\gamma }{\bar {m}}^{\delta }}
(但請注意,整體符號是任意的,並且 Newman & Penrose 使用了「類時間」度量符號
(
+
,
−
,
−
,
−
)
{\displaystyle (+,-,-,-)}
)。在空曠的空間中,愛因斯坦場方程 簡化為
R
α
β
=
0
{\displaystyle R_{\alpha \beta }=0}
。從韋爾張量的定義中,我們可以看出這意味著它等於黎曼張量 ,
C
α
β
γ
δ
=
R
α
β
γ
δ
{\displaystyle C_{\alpha \beta \gamma \delta }=R_{\alpha \beta \gamma \delta }}
。我們可以對無窮遠處的四元組做出標準選擇:
ℓ
μ
=
1
2
(
t
^
+
r
^
)
,
{\displaystyle \ell ^{\mu }={\frac {1}{\sqrt {2}}}\left({\hat {t}}+{\hat {r}}\right)\ ,}
n
μ
=
1
2
(
t
^
−
r
^
)
,
{\displaystyle n^{\mu }={\frac {1}{\sqrt {2}}}\left({\hat {t}}-{\hat {r}}\right)\ ,}
m
μ
=
1
2
(
θ
^
+
i
ϕ
^
)
.
{\displaystyle m^{\mu }={\frac {1}{\sqrt {2}}}\left({\hat {\theta }}+i{\hat {\phi }}\right)\ .}
在橫向無跡規範中,簡單的計算表明線性引力波 與黎曼張量的分量的關係為
1
4
(
h
¨
θ
^
θ
^
−
h
¨
ϕ
^
ϕ
^
)
=
−
R
t
^
θ
^
t
^
θ
^
=
−
R
t
^
ϕ
^
r
^
ϕ
^
=
−
R
r
^
θ
^
r
^
θ
^
=
R
t
^
ϕ
^
t
^
ϕ
^
=
R
t
^
θ
^
r
^
θ
^
=
R
r
^
ϕ
^
r
^
ϕ
^
,
{\displaystyle {\tfrac {1}{4}}\left({\ddot {h}}_{{\hat {\theta }}{\hat {\theta }}}-{\ddot {h}}_{{\hat {\phi }}{\hat {\phi }}}\right)=-R_{{\hat {t}}{\hat {\theta }}{\hat {t}}{\hat {\theta }}}=-R_{{\hat {t}}{\hat {\phi }}{\hat {r}}{\hat {\phi }}}=-R_{{\hat {r}}{\hat {\theta }}{\hat {r}}{\hat {\theta }}}=R_{{\hat {t}}{\hat {\phi }}{\hat {t}}{\hat {\phi }}}=R_{{\hat {t}}{\hat {\theta }}{\hat {r}}{\hat {\theta }}}=R_{{\hat {r}}{\hat {\phi }}{\hat {r}}{\hat {\phi }}}\ ,}
1
2
h
¨
θ
^
ϕ
^
=
−
R
t
^
θ
^
t
^
ϕ
^
=
−
R
r
^
θ
^
r
^
ϕ
^
=
R
t
^
θ
^
r
^
ϕ
^
=
R
r
^
θ
^
t
^
ϕ
^
,
{\displaystyle {\tfrac {1}{2}}{\ddot {h}}_{{\hat {\theta }}{\hat {\phi }}}=-R_{{\hat {t}}{\hat {\theta }}{\hat {t}}{\hat {\phi }}}=-R_{{\hat {r}}{\hat {\theta }}{\hat {r}}{\hat {\phi }}}=R_{{\hat {t}}{\hat {\theta }}{\hat {r}}{\hat {\phi }}}=R_{{\hat {r}}{\hat {\theta }}{\hat {t}}{\hat {\phi }}}\ ,}
假設傳播在
r
^
{\displaystyle {\hat {r}}}
方向。結合這些,並使用定義
Ψ
4
{\displaystyle \Psi _{4}}
上面,我們可以寫
Ψ
4
=
1
2
(
h
¨
θ
^
θ
^
−
h
¨
ϕ
^
ϕ
^
)
+
i
h
¨
θ
^
ϕ
^
=
−
h
¨
+
+
i
h
¨
×
.
{\displaystyle \Psi _{4}={\tfrac {1}{2}}\left({\ddot {h}}_{{\hat {\theta }}{\hat {\theta }}}-{\ddot {h}}_{{\hat {\phi }}{\hat {\phi }}}\right)+i{\ddot {h}}_{{\hat {\theta }}{\hat {\phi }}}=-{\ddot {h}}_{+}+i{\ddot {h}}_{\times }\,.}
遠離源頭,在幾乎平坦的空間中,場
h
+
{\displaystyle h_{+}}
和
h
×
{\displaystyle h_{\times }}
對沿給定方向傳播的引力輻射的所有內容進行編碼。因此,我們看到
Ψ
4
{\displaystyle \Psi _{4}}
在單個複雜場中對有關(傳出的)引力波的所有內容進行編碼。
使用 Thorne 總結的波生成形式[ 16] ,我們可以用質量多極子 、電流多極子 和自旋加權球諧函數非常緊湊地寫出輻射場:
Ψ
4
(
t
,
r
,
θ
,
ϕ
)
=
−
1
r
2
∑
ℓ
=
2
∞
∑
m
=
−
ℓ
ℓ
[
(
ℓ
+
2
)
I
ℓ
m
(
t
−
r
)
−
i
(
ℓ
+
2
)
S
ℓ
m
(
t
−
r
)
]
−
2
Y
ℓ
m
(
θ
,
ϕ
)
.
{\displaystyle \Psi _{4}(t,r,\theta ,\phi )=-{\frac {1}{r{\sqrt {2}}}}\sum _{\ell =2}^{\infty }\sum _{m=-\ell }^{\ell }\left[{}^{(\ell +2)}I^{\ell m}(t-r)-i\ {}^{(\ell +2)}S^{\ell m}(t-r)\right]{}_{-2}Y_{\ell m}(\theta ,\phi )\ .}
這裡,前綴上標表示時間導數。也就是說,我們定義
(
ℓ
)
G
(
t
)
=
(
d
d
t
)
ℓ
G
(
t
)
.
{\displaystyle {}^{(\ell )}G(t)=\left({\frac {d}{dt}}\right)^{\ell }G(t)\ .}
組件
I
ℓ
m
{\displaystyle I^{\ell m}}
和
S
ℓ
m
{\displaystyle S^{\ell m}}
分別是質量和電流多極子。
−
2
Y
ℓ
m
{\displaystyle {}_{-2}Y_{\ell m}}
是自旋重量 −2 球諧函數。
光錐坐標
GHP 形式體系
四元組形式體系
戈德堡-薩克斯定理
^ 1.0 1.1 1.2 1.3 Ezra T. Newman and Roger Penrose. An Approach to Gravitational Radiation by a Method of Spin Coefficients. Journal of Mathematical Physics. 1962, 3 (3): 566–768. Bibcode:1962JMP.....3..566N . doi:10.1063/1.1724257 . The original paper by Newman and Penrose, which introduces the formalism, and uses it to derive example results.
^ 2.0 2.1 2.2 Ezra T Newman, Roger Penrose. Errata: An Approach to Gravitational Radiation by a Method of Spin Coefficients . Journal of Mathematical Physics, 1963, 4 (7): 998.
^ 3.0 3.1 Chandrasekhar, S. The Mathematical Theory of Black Holes Oxford Classics Series. Oxford University Press. 1998: 40 [31 May 2019] . ISBN 0-19850370-9 . The Newman–Penrose formalism is a tetrad formalism with a special choice of the basis vectors.
^ Saul Teukolsky. Perturbations of a rotating black hole. Astrophysical Journal. 1973, 185 : 635–647. Bibcode:1973ApJ...185..635T . doi:10.1086/152444 .
^ Peter O'Donnell. Introduction to 2-Spinors in General Relativity . Singapore: World Scientific, 2003.
^ Subrahmanyan Chandrasekhar. The Mathematical Theory of Black Holes . Chicago: University of Chikago Press, 1983.
^ J B Griffiths. Colliding Plane Waves in General Relativity . Oxford: Oxford University Press, 1991.
^ Ivan Booth. Black hole boundaries . Canadian Journal of Physics, 2005, 83 (11): 1073-1099. [arxiv.org/abs/gr-qc/0508107 arXiv:gr-qc/0508107v2]
^ Abhay Ashtekar, Christopher Beetle, Jerzy Lewandowski. Geometry of generic isolated horizons . Classical and Quantum Gravity, 2002, 19 (6): 1195-1225. arXiv:gr-qc/0111067v2
^ Abhay Ashtekar, Badri Krishnan. Dynamical horizons: energy, angular momentum, fluxes and balance laws . Physical Review Letters, 2002, 89 (26): 261101. [arxiv.org/abs/gr-qc/0207080 arXiv:gr-qc/0207080v3]
^ Abhay Ashtekar, Badri Krishnan. Dynamical horizons and their properties . Physical Review D, 2003, 68 (10): 104030. [arxiv.org/abs/gr-qc/0308033 arXiv:gr-qc/0308033v4]
^ Jeremy Bransom Griffiths, Jiri Podolsky. Exact Space-Times in Einstein's General Relativity . Cambridge: Cambridge University Press, 2009. Chapter 2.
^ 13.0 13.1 Valeri P Frolov, Igor D Novikov. Black Hole Physics: Basic Concepts and New Developments . Berlin: Springer, 1998. Appendix E.
^ Abhay Ashtekar, Stephen Fairhurst, Badri Krishnan. Isolated horizons: Hamiltonian evolution and the first law . Physical Review D, 2000, 62 (10): 104025. Appendix B. gr-qc/0005083
^ Robert M. Wald. General Relativity . 1984. ISBN 9780226870335 .
^ Thorne, Kip S. Multipole expansions of gravitational radiation (PDF) . Rev. Mod. Phys. April 1980, 52 (2): 299–339. Bibcode:1980RvMP...52..299T . doi:10.1103/RevModPhys.52.299 . A broad summary of the mathematical formalism used in the literature on gravitational radiation.
[[Category:廣義相對論]]
[[Category:數學表示法]]
[[Category:相对论]]
[[Category:罗杰·彭罗斯]]