纽曼-彭罗斯 ( NP )形式体系 [ 1] [ 2] 是由Ezra T. Newman和Roger Penrose 为广义相对论 (GR) 发展出的一套记号体系。他们的记号体系试图用旋量 记号来处理广义相对论,从而引入了广义相对论中通常使用的变量的复 数形式。 NP 形式体系本身是四元组形式体系的一个特例, [ 3] 在该体系中,理论中的张量被投影到时空每个点的完备矢量基上。通常选择这个矢量基来反映时空的某种对称性,从而简化物理可观测量的表达。对于 NP 形式体系,所选择的矢量基是零四元组:一组四个零矢量——两个实数,一个复共轭对。两个实数成员通常渐近地指向径向内侧和径向外侧,并且该形式体系非常适合处理弯曲时空中的辐射传播。通常使用由韦尔张量导出的韦尔标量。具体来说,可以证明其中一个标量——
Ψ
4
{\displaystyle \Psi _{4}}
在适当的框架中——编码渐近平坦系统向外的引力辐射 。 [ 4]
纽曼和彭罗斯利用这个四元组引入了以下函数作为基本量: [ 1] [ 2]
十二个复杂的自旋系数(分为三组)描述了四元组从一个点到另一个点的变化:
κ
,
ρ
,
σ
,
τ
;
λ
,
μ
,
ν
,
π
;
ϵ
,
γ
,
β
,
α
.
{\displaystyle \kappa ,\rho ,\sigma ,\tau \,;\lambda ,\mu ,\nu ,\pi \,;\epsilon ,\gamma ,\beta ,\alpha .}
。
在四元组基中编码 Weyl 张量的五个复函数:
Ψ
0
,
…
,
Ψ
4
{\displaystyle \Psi _{0},\ldots ,\Psi _{4}}
。
在四元组基中编码Ricci 张量的 十个函数:
Φ
00
,
Φ
11
,
Φ
22
,
Λ
{\displaystyle \Phi _{00},\Phi _{11},\Phi _{22},\Lambda }
(真实的);
Φ
01
,
Φ
10
,
Φ
02
,
Φ
20
,
Φ
12
,
Φ
21
{\displaystyle \Phi _{01},\Phi _{10},\Phi _{02},\Phi _{20},\Phi _{12},\Phi _{21}}
(复杂的)。
在许多情况下——尤其是代数特殊时空或真空时空——纽曼-彭罗斯形式大大简化,因为许多函数趋于零。与使用爱因斯坦方程的标准形式相比,这种简化可以更容易地证明各种定理。
在本文中,我们将只采用张量 而非旋量 版本的 NP 形式,因为前者更容易理解并且在相关论文中更流行。关于这两个版本的统一表述可以参考文献 [ 5] 。
该形式体系是针对四维时空开发的,具有洛伦兹号型度规。在每个点上,引入一个四元组(四个矢量的集合)。前两个矢量
ℓ
μ
{\displaystyle \ell ^{\mu }}
和
n
μ
{\displaystyle n^{\mu }}
只是一对标准(实)零矢量,
ℓ
a
n
a
=
−
1
{\displaystyle \ell ^{a}n_{a}=-1}
。例如,我们可以用球坐标来思考,并取
ℓ
a
{\displaystyle \ell ^{a}}
为传出的零矢量,并且
n
a
{\displaystyle n^{a}}
成为进入的零矢量。然后通过组合一对实数、正交的单位空间矢量构造一个复数零矢量。对于球坐标,标准选择是
m
μ
=
1
2
(
θ
^
+
i
ϕ
^
)
μ
.
{\displaystyle m^{\mu }={\frac {1}{\sqrt {2}}}\left({\hat {\theta }}+i{\hat {\phi }}\right)^{\mu }\ .}
该矢量的复共轭就构成了四元组的第四个元素。
NP 形式化使用了两组签名和规范化约定:
{
(
+
,
−
,
−
,
−
)
;
ℓ
a
n
a
=
1
,
m
a
m
¯
a
=
−
1
}
{\displaystyle \{(+,-,-,-);\ell ^{a}n_{a}=1\,,m^{a}{\bar {m}}_{a}=-1\}}
和
{
(
−
,
+
,
+
,
+
)
;
ℓ
a
n
a
=
−
1
,
m
a
m
¯
a
=
1
}
{\displaystyle \{(-,+,+,+);\ell ^{a}n_{a}=-1\,,m^{a}{\bar {m}}_{a}=1\}}
。前者是 NP 形式体系发展过程[ 1] [ 2] 中最初采用的[ 1] 方法,并在黑洞物理、引力波和广义相对论的其他各个领域得到了广泛的应用 。然而,当代从准局部视角研究黑洞时通常采用的是后一种惯例 (如孤立视界和动态视界 )。在本文中,我们将利用
{
(
−
,
+
,
+
,
+
)
;
ℓ
a
n
a
=
−
1
,
m
a
m
¯
a
=
1
}
{\displaystyle \{(-,+,+,+);\ell ^{a}n_{a}=-1\,,m^{a}{\bar {m}}_{a}=1\}}
对 NP 形式体系进行系统回顾(另见参考文献[ 6] [ 7] in black-hole physics, gravitational waves and various other areas in general relativity. However, it is the latter convention that is usually employed in contemporary study of black holes from quasilocal perspectives[ 8] (such as isolated horizons[ 9] and dynamical horizons[ 10] [ 11] ). In this article, we will utilize
{
(
−
,
+
,
+
,
+
)
;
ℓ
a
n
a
=
−
1
,
m
a
m
¯
a
=
1
}
{\displaystyle \{(-,+,+,+);\ell ^{a}n_{a}=-1\,,m^{a}{\bar {m}}_{a}=1\}}
for a systematic review of the NP formalism (see also refs.[ 12] [ 13] [ 14] )。
需要注意的是,当从
{
(
+
,
−
,
−
,
−
)
,
ℓ
a
n
a
=
1
,
m
a
m
¯
a
=
−
1
}
{\displaystyle \{(+,-,-,-)\,,\ell ^{a}n_{a}=1\,,m^{a}{\bar {m}}_{a}=-1\}}
到
{
(
−
,
+
,
+
,
+
)
,
ℓ
a
n
a
=
−
1
,
m
a
m
¯
a
=
1
}
{\displaystyle \{(-,+,+,+)\,,\ell ^{a}n_{a}=-1\,,m^{a}{\bar {m}}_{a}=1\}}
、自旋系数的定义、Weyl-NP 标量
Ψ
i
{\displaystyle \Psi _{i}}
和 Ricci-NP 标量
Φ
i
j
{\displaystyle \Phi _{ij}}
需要改变它们的符号;这样,爱因斯坦-麦克斯韦方程就可以保持不变。
在 NP 形式中,复数零四元组包含两个实数零(余)矢量
{
ℓ
,
n
}
{\displaystyle \{\ell \,,n\}}
以及两个复数零(余)矢量
{
m
,
m
¯
}
{\displaystyle \{m\,,{\bar {m}}\}}
。作为零 (余)矢量,自 归一化
{
ℓ
,
n
}
{\displaystyle \{\ell \,,n\}}
自然消失,
ℓ
a
ℓ
a
=
n
a
n
a
=
m
a
m
a
=
m
¯
a
m
¯
a
=
0
,
{\displaystyle \ell _{a}\ell ^{a}=n_{a}n^{a}=m_{a}m^{a}={\bar {m}}_{a}{\bar {m}}^{a}=0,}
因此采用以下两对交叉 规范化
ℓ
a
n
a
=
−
1
=
ℓ
a
n
a
,
m
a
m
¯
a
=
1
=
m
a
m
¯
a
,
{\displaystyle \ell _{a}n^{a}=-1=\ell ^{a}n_{a}\,,\quad m_{a}{\bar {m}}^{a}=1=m^{a}{\bar {m}}_{a}\,,}
而两对之间的收缩也正在消失,
ℓ
a
m
a
=
ℓ
a
m
¯
a
=
n
a
m
a
=
n
a
m
¯
a
=
0.
{\displaystyle \ell _{a}m^{a}=\ell _{a}{\bar {m}}^{a}=n_{a}m^{a}=n_{a}{\bar {m}}^{a}=0.}
这里的指数可以通过全球指标 来提高或降低
g
a
b
{\displaystyle g_{ab}}
可以通过以下方式获得
g
a
b
=
−
ℓ
a
n
b
−
n
a
ℓ
b
+
m
a
m
¯
b
+
m
¯
a
m
b
,
g
a
b
=
−
ℓ
a
n
b
−
n
a
ℓ
b
+
m
a
m
¯
b
+
m
¯
a
m
b
.
{\displaystyle {\begin{aligned}g_{ab}&=-\ell _{a}n_{b}-n_{a}\ell _{b}+m_{a}{\bar {m}}_{b}+{\bar {m}}_{a}m_{b}\,,\\[1ex]g^{ab}&=-\ell ^{a}n^{b}-n^{a}\ell ^{b}+m^{a}{\bar {m}}^{b}+{\bar {m}}^{a}m^{b}\,.\end{aligned}}}
为了与形式体系对对象的每个组成部分使用不同的未索引符号的实践保持一致,协变导数 运算符
∇
a
{\displaystyle \nabla _{a}}
使用四个独立的符号来表示(
D
,
Δ
,
δ
,
δ
¯
{\displaystyle D,\Delta ,\delta ,{\bar {\delta }}}
) 为每个四元组方向命名一个方向 协变导 数算子。给定四元组矢量的线性组合,
X
a
=
a
ℓ
a
+
b
n
a
+
c
m
a
+
d
m
¯
a
{\displaystyle X^{a}=\mathrm {a} \ell ^{a}+\mathrm {b} n^{a}+\mathrm {c} m^{a}+\mathrm {d} {\bar {m}}^{a}}
,协变导数算子
X
a
{\displaystyle X^{a}}
方向是
∇
X
=
X
a
∇
a
=
(
a
D
+
b
Δ
+
c
δ
+
d
δ
¯
)
{\displaystyle \nabla _{X}=X^{a}\nabla _{a}=(\mathrm {a} D+\mathrm {b} \Delta +\mathrm {c} \delta +\mathrm {d} {\bar {\delta }})}
。
D
:=
∇
ℓ
=
ℓ
a
∇
a
,
Δ
:=
∇
n
=
n
a
∇
a
,
δ
:=
∇
m
=
m
a
∇
a
,
δ
¯
:=
∇
m
¯
=
m
¯
a
∇
a
,
{\displaystyle {\begin{aligned}D&:=\nabla _{\boldsymbol {\ell }}=\ell ^{a}\nabla _{a}\,,&\Delta &:=\nabla _{\boldsymbol {n}}=n^{a}\nabla _{a}\,,\\[1ex]\delta &:=\nabla _{\boldsymbol {m}}=m^{a}\nabla _{a}\,,&{\bar {\delta }}&:=\nabla _{\boldsymbol {\bar {m}}}={\bar {m}}^{a}\nabla _{a}\,,\end{aligned}}}
简化为
D
=
ℓ
a
∂
a
,
Δ
=
n
a
∂
a
,
δ
=
m
a
∂
a
,
δ
¯
=
m
¯
a
∂
a
{\displaystyle D=\ell ^{a}\partial _{a}\,,\Delta =n^{a}\partial _{a}\,,\delta =m^{a}\partial _{a}\,,{\bar {\delta }}={\bar {m}}^{a}\partial _{a}}
当作用于标量 函数时。
在 NP 形式中,每个Ricci 旋转 系数
γ
i
j
k
{\displaystyle \gamma _{ijk}}
在零四元组中分配了一个小写的希腊字母,它们构成了 12 个复杂的自旋系数 (分为三组),
κ
:=
−
m
a
D
ℓ
a
=
−
m
a
ℓ
b
∇
b
ℓ
a
,
τ
:=
−
m
a
Δ
ℓ
a
=
−
m
a
n
b
∇
b
ℓ
a
,
σ
:=
−
m
a
δ
ℓ
a
=
−
m
a
m
b
∇
b
ℓ
a
,
ρ
:=
−
m
a
δ
¯
ℓ
a
=
−
m
a
m
¯
b
∇
b
ℓ
a
;
π
:=
m
¯
a
D
n
a
=
m
¯
a
ℓ
b
∇
b
n
a
,
ν
:=
m
¯
a
Δ
n
a
=
m
¯
a
n
b
∇
b
n
a
,
μ
:=
m
¯
a
δ
n
a
=
m
¯
a
m
b
∇
b
n
a
,
λ
:=
m
¯
a
δ
¯
n
a
=
m
¯
a
m
¯
b
∇
b
n
a
;
{\displaystyle {\begin{aligned}\kappa &:=-m^{a}D\ell _{a}=-m^{a}\ell ^{b}\nabla _{b}\ell _{a}\,,&\tau &:=-m^{a}\Delta \ell _{a}=-m^{a}n^{b}\nabla _{b}\ell _{a}\,,\\[1ex]\sigma &:=-m^{a}\delta \ell _{a}=-m^{a}m^{b}\nabla _{b}\ell _{a}\,,&\rho &:=-m^{a}{\bar {\delta }}\ell _{a}=-m^{a}{\bar {m}}^{b}\nabla _{b}\ell _{a}\,;\\[1ex]\pi &:={\bar {m}}^{a}Dn_{a}={\bar {m}}^{a}\ell ^{b}\nabla _{b}n_{a}\,,&\nu &:={\bar {m}}^{a}\Delta n_{a}={\bar {m}}^{a}n^{b}\nabla _{b}n_{a}\,,\\[1ex]\mu &:={\bar {m}}^{a}\delta n_{a}={\bar {m}}^{a}m^{b}\nabla _{b}n_{a}\,,&\lambda &:={\bar {m}}^{a}{\bar {\delta }}n_{a}={\bar {m}}^{a}{\bar {m}}^{b}\nabla _{b}n_{a}\,;\end{aligned}}}
ε
:=
−
1
2
(
n
a
D
ℓ
a
−
m
¯
a
D
m
a
)
=
−
1
2
(
n
a
ℓ
b
∇
b
ℓ
a
−
m
¯
a
ℓ
b
∇
b
m
a
)
,
γ
:=
−
1
2
(
n
a
Δ
ℓ
a
−
m
¯
a
Δ
m
a
)
=
−
1
2
(
n
a
n
b
∇
b
ℓ
a
−
m
¯
a
n
b
∇
b
m
a
)
,
β
:=
−
1
2
(
n
a
δ
ℓ
a
−
m
¯
a
δ
m
a
)
=
−
1
2
(
n
a
m
b
∇
b
ℓ
a
−
m
¯
a
m
b
∇
b
m
a
)
,
α
:=
−
1
2
(
n
a
δ
¯
ℓ
a
−
m
¯
a
δ
¯
m
a
)
=
−
1
2
(
n
a
m
¯
b
∇
b
ℓ
a
−
m
¯
a
m
¯
b
∇
b
m
a
)
.
{\displaystyle {\begin{aligned}\varepsilon &:=-{\tfrac {1}{2}}\left(n^{a}D\ell _{a}-{\bar {m}}^{a}Dm_{a}\right)=-{\tfrac {1}{2}}\left(n^{a}\ell ^{b}\nabla _{b}\ell _{a}-{\bar {m}}^{a}\ell ^{b}\nabla _{b}m_{a}\right)\,,\\[1ex]\gamma &:=-{\tfrac {1}{2}}\left(n^{a}\Delta \ell _{a}-{\bar {m}}^{a}\Delta m_{a}\right)=-{\tfrac {1}{2}}\left(n^{a}n^{b}\nabla _{b}\ell _{a}-{\bar {m}}^{a}n^{b}\nabla _{b}m_{a}\right)\,,\\[1ex]\beta &:=-{\tfrac {1}{2}}\left(n^{a}\delta \ell _{a}-{\bar {m}}^{a}\delta m_{a}\right)=-{\tfrac {1}{2}}\left(n^{a}m^{b}\nabla _{b}\ell _{a}-{\bar {m}}^{a}m^{b}\nabla _{b}m_{a}\right)\,,\\[1ex]\alpha &:=-{\tfrac {1}{2}}\left(n^{a}{\bar {\delta }}\ell _{a}-{\bar {m}}^{a}{\bar {\delta }}m_{a}\right)=-{\tfrac {1}{2}}\left(n^{a}{\bar {m}}^{b}\nabla _{b}\ell _{a}-{\bar {m}}^{a}{\bar {m}}^{b}\nabla _{b}m_{a}\right)\,.\end{aligned}}}
自旋系数是 NP 形式中的主要量,所有其他 NP 量(如下所定义)都可以利用 NP 场方程间接计算。因此,NP 形式有时也称为自旋系数形式 。
四元组矢量的十六个方向协变导数有时被称为传输/传播方程, [來源請求] 可能是因为当四元组矢量沿导数算子方向平行传播或传输时,导数为零。
O'Donnell 给出了以这种精确符号表示的结果: :57–58(3.220)
D
ℓ
a
=
(
ε
+
ε
¯
)
ℓ
a
−
κ
¯
m
a
−
κ
m
¯
a
,
Δ
ℓ
a
=
(
γ
+
γ
¯
)
ℓ
a
−
τ
¯
m
a
−
τ
m
¯
a
,
δ
ℓ
a
=
(
α
¯
+
β
)
ℓ
a
−
ρ
¯
m
a
−
σ
m
¯
a
,
δ
¯
ℓ
a
=
(
α
+
β
¯
)
ℓ
a
−
σ
¯
m
a
−
ρ
m
¯
a
;
{\displaystyle {\begin{aligned}D\ell ^{a}&=\left(\varepsilon +{\bar {\varepsilon }}\right)\ell ^{a}-{\bar {\kappa }}m^{a}-\kappa {\bar {m}}^{a}\,,\\[1ex]\Delta \ell ^{a}&=\left(\gamma +{\bar {\gamma }}\right)\ell ^{a}-{\bar {\tau }}m^{a}-\tau {\bar {m}}^{a}\,,\\[1ex]\delta \ell ^{a}&=\left({\bar {\alpha }}+\beta \right)\ell ^{a}-{\bar {\rho }}m^{a}-\sigma {\bar {m}}^{a}\,,\\[1ex]{\bar {\delta }}\ell ^{a}&=\left(\alpha +{\bar {\beta }}\right)\ell ^{a}-{\bar {\sigma }}m^{a}-\rho {\bar {m}}^{a}\,;\end{aligned}}}
D
n
a
=
π
m
a
+
π
¯
m
¯
a
−
(
ε
+
ε
¯
)
n
a
,
Δ
n
a
=
ν
m
a
+
ν
¯
m
¯
a
−
(
γ
+
γ
¯
)
n
a
,
δ
n
a
=
μ
m
a
+
λ
¯
m
¯
a
−
(
α
¯
+
β
)
n
a
,
δ
¯
n
a
=
λ
m
a
+
μ
¯
m
¯
a
−
(
α
+
β
¯
)
n
a
;
{\displaystyle {\begin{aligned}Dn^{a}&=\pi m^{a}+{\bar {\pi }}{\bar {m}}^{a}-\left(\varepsilon +{\bar {\varepsilon }}\right)n^{a}\,,\\[1ex]\Delta n^{a}&=\nu m^{a}+{\bar {\nu }}{\bar {m}}^{a}-\left(\gamma +{\bar {\gamma }}\right)n^{a}\,,\\[1ex]\delta n^{a}&=\mu m^{a}+{\bar {\lambda }}{\bar {m}}^{a}-\left({\bar {\alpha }}+\beta \right)n^{a}\,,\\[1ex]{\bar {\delta }}n^{a}&=\lambda m^{a}+{\bar {\mu }}{\bar {m}}^{a}-\left(\alpha +{\bar {\beta }}\right)n^{a}\,;\end{aligned}}}
D
m
a
=
(
ε
−
ε
¯
)
m
a
+
π
¯
ℓ
a
−
κ
n
a
,
Δ
m
a
=
(
γ
−
γ
¯
)
m
a
+
ν
¯
ℓ
a
−
τ
n
a
,
δ
m
a
=
(
β
−
α
¯
)
m
a
+
λ
¯
ℓ
a
−
σ
n
a
,
δ
¯
m
a
=
(
α
−
β
¯
)
m
a
+
μ
¯
ℓ
a
−
ρ
n
a
;
{\displaystyle {\begin{aligned}Dm^{a}&=\left(\varepsilon -{\bar {\varepsilon }}\right)m^{a}+{\bar {\pi }}\ell ^{a}-\kappa n^{a}\,,\\[1ex]\Delta m^{a}&=\left(\gamma -{\bar {\gamma }}\right)m^{a}+{\bar {\nu }}\ell ^{a}-\tau n^{a}\,,\\[1ex]\delta m^{a}&=\left(\beta -{\bar {\alpha }}\right)m^{a}+{\bar {\lambda }}\ell ^{a}-\sigma n^{a}\,,\\[1ex]{\bar {\delta }}m^{a}&=\left(\alpha -{\bar {\beta }}\right)m^{a}+{\bar {\mu }}\ell ^{a}-\rho n^{a}\,;\end{aligned}}}
D
m
¯
a
=
(
ε
¯
−
ε
)
m
¯
a
+
π
ℓ
a
−
κ
¯
n
a
,
Δ
m
¯
a
=
(
γ
¯
−
γ
)
m
¯
a
+
ν
ℓ
a
−
τ
¯
n
a
,
δ
m
¯
a
=
(
α
¯
−
β
)
m
¯
a
+
μ
ℓ
a
−
ρ
¯
n
a
,
δ
¯
m
¯
a
=
(
β
¯
−
α
)
m
¯
a
+
λ
ℓ
a
−
σ
¯
n
a
.
{\displaystyle {\begin{aligned}D{\bar {m}}^{a}&=\left({\bar {\varepsilon }}-\varepsilon \right){\bar {m}}^{a}+\pi \ell ^{a}-{\bar {\kappa }}n^{a}\,,\\[1ex]\Delta {\bar {m}}^{a}&=\left({\bar {\gamma }}-\gamma \right){\bar {m}}^{a}+\nu \ell ^{a}-{\bar {\tau }}n^{a}\,,\\[1ex]\delta {\bar {m}}^{a}&=\left({\bar {\alpha }}-\beta \right){\bar {m}}^{a}+\mu \ell ^{a}-{\bar {\rho }}n^{a}\,,\\[1ex]{\bar {\delta }}{\bar {m}}^{a}&=\left({\bar {\beta }}-\alpha \right){\bar {m}}^{a}+\lambda \ell ^{a}-{\bar {\sigma }}n^{a}\,.\end{aligned}}}
从Dℓ a 和 Δ n a 解释κ 、 ε 、 ν 、 γ [ 编辑 ]
实零四元组矢量在其自身方向上的协变导数的两个方程表明该矢量是否与测地线相切,如果是,则表明测地线是否具有仿射参数。
零切矢量
T
a
{\displaystyle T^{a}}
如果
T
b
∇
b
T
a
=
0
{\displaystyle T^{b}\nabla _{b}T^{a}=0}
,也就是说,如果矢量沿其自身方向平行传播或传输,则矢量不会发生变化。 [ 15] :41(3.3.1)
D
ℓ
a
=
(
ε
+
ε
¯
)
ℓ
a
−
κ
¯
m
a
−
κ
m
¯
a
{\displaystyle D\ell ^{a}=(\varepsilon +{\bar {\varepsilon }})\ell ^{a}-{\bar {\kappa }}m^{a}-\kappa {\bar {m}}^{a}}
表明
ℓ
a
{\displaystyle \ell ^{a}}
与测地线相切当且仅当
κ
=
0
{\displaystyle \kappa =0}
并且与仿射参数化测地线相切,如果另外
(
ε
+
ε
¯
)
=
0
{\displaystyle (\varepsilon +{\bar {\varepsilon }})=0}
。相似地,
Δ
n
a
=
ν
m
a
+
ν
¯
m
¯
a
−
(
γ
+
γ
¯
)
n
a
{\displaystyle \Delta n^{a}=\nu m^{a}+{\bar {\nu }}{\bar {m}}^{a}-(\gamma +{\bar {\gamma }})n^{a}}
表明
n
a
{\displaystyle n^{a}}
是测地线当且仅当
ν
=
0
{\displaystyle \nu =0}
,并且具有仿射参数化
(
γ
+
γ
¯
)
=
0
{\displaystyle (\gamma +{\bar {\gamma }})=0}
。
(复杂的无效四分体载体
m
a
=
x
a
+
i
y
a
{\displaystyle m^{a}=x^{a}+iy^{a}}
和
m
¯
a
=
x
a
−
i
y
a
{\displaystyle {\bar {m}}^{a}=x^{a}-iy^{a}}
必须分离成类空基矢量
x
a
{\displaystyle x^{a}}
和
y
a
{\displaystyle y^{a}}
然后询问其中一个或两个是否与类空测地线相切。)
协变导数的度量兼容性或无扭转性 被重铸为方向导数的对易子 ,
Δ
D
−
D
Δ
=
(
γ
+
γ
¯
)
D
+
(
ε
+
ε
¯
)
Δ
−
(
τ
¯
+
π
)
δ
−
(
τ
+
π
¯
)
δ
¯
,
δ
D
−
D
δ
=
(
α
¯
+
β
−
π
¯
)
D
+
κ
Δ
−
(
ρ
¯
+
ε
−
ε
¯
)
δ
−
σ
δ
¯
,
δ
Δ
−
Δ
δ
=
−
ν
¯
D
+
(
τ
−
α
¯
−
β
)
Δ
+
(
μ
−
γ
+
γ
¯
)
δ
+
λ
¯
δ
¯
,
δ
¯
δ
−
δ
δ
¯
=
(
μ
¯
−
μ
)
D
+
(
ρ
¯
−
ρ
)
Δ
+
(
α
−
β
¯
)
δ
−
(
α
¯
−
β
)
δ
¯
,
{\displaystyle {\begin{aligned}\Delta D-D\Delta &=\left(\gamma +{\bar {\gamma }}\right)D+\left(\varepsilon +{\bar {\varepsilon }}\right)\Delta -\left({\bar {\tau }}+\pi \right)\delta -\left(\tau +{\bar {\pi }}\right){\bar {\delta }}\,,\\[1ex]\delta D-D\delta &=\left({\bar {\alpha }}+\beta -{\bar {\pi }}\right)D+\kappa \Delta -\left({\bar {\rho }}+\varepsilon -{\bar {\varepsilon }}\right)\delta -\sigma {\bar {\delta }}\,,\\[1ex]\delta \Delta -\Delta \delta &=-{\bar {\nu }}D+\left(\tau -{\bar {\alpha }}-\beta \right)\Delta +\left(\mu -\gamma +{\bar {\gamma }}\right)\delta +{\bar {\lambda }}{\bar {\delta }}\,,\\[1ex]{\bar {\delta }}\delta -\delta {\bar {\delta }}&=\left({\bar {\mu }}-\mu \right)D+\left({\bar {\rho }}-\rho \right)\Delta +\left(\alpha -{\bar {\beta }}\right)\delta -\left({\bar {\alpha }}-\beta \right){\bar {\delta }}\,,\end{aligned}}}
这意味着
Δ
ℓ
a
−
D
n
a
=
(
γ
+
γ
¯
)
ℓ
a
+
(
ε
+
ε
¯
)
n
a
−
(
τ
¯
+
π
)
m
a
−
(
τ
+
π
¯
)
m
¯
a
,
δ
ℓ
a
−
D
m
a
=
(
α
¯
+
β
−
π
¯
)
ℓ
a
+
κ
n
a
−
(
ρ
¯
+
ε
−
ε
¯
)
m
a
−
σ
m
¯
a
,
δ
n
a
−
Δ
m
a
=
−
ν
¯
ℓ
a
+
(
τ
−
α
¯
−
β
)
n
a
+
(
μ
−
γ
+
γ
¯
)
m
a
+
λ
¯
m
¯
a
,
δ
¯
m
a
−
δ
m
¯
a
=
(
μ
¯
−
μ
)
ℓ
a
+
(
ρ
¯
−
ρ
)
n
a
+
(
α
−
β
¯
)
m
a
−
(
α
¯
−
β
)
m
¯
a
.
{\displaystyle {\begin{aligned}\Delta \ell ^{a}-Dn^{a}&=\left(\gamma +{\bar {\gamma }}\right)\ell ^{a}+\left(\varepsilon +{\bar {\varepsilon }}\right)n^{a}-\left({\bar {\tau }}+\pi \right)m^{a}-\left(\tau +{\bar {\pi }}\right){\bar {m}}^{a}\,,\\[1ex]\delta \ell ^{a}-Dm^{a}&=\left({\bar {\alpha }}+\beta -{\bar {\pi }}\right)\ell ^{a}+\kappa n^{a}-\left({\bar {\rho }}+\varepsilon -{\bar {\varepsilon }}\right)m^{a}-\sigma {\bar {m}}^{a}\,,\\[1ex]\delta n^{a}-\Delta m^{a}&=-{\bar {\nu }}\ell ^{a}+\left(\tau -{\bar {\alpha }}-\beta \right)n^{a}+\left(\mu -\gamma +{\bar {\gamma }}\right)m^{a}+{\bar {\lambda }}{\bar {m}}^{a}\,,\\[1ex]{\bar {\delta }}m^{a}-\delta {\bar {m}}^{a}&=\left({\bar {\mu }}-\mu \right)\ell ^{a}+\left({\bar {\rho }}-\rho \right)n^{a}+\left(\alpha -{\bar {\beta }}\right)m^{a}-\left({\bar {\alpha }}-\beta \right){\bar {m}}^{a}\,.\end{aligned}}}
注意:(i)上述方程既可以看作对易子的蕴涵,也可以看作运输方程的组合;(ii)在这些隐含方程中,矢量
{
ℓ
a
,
n
a
,
m
a
,
m
¯
a
}
{\displaystyle \{\ell ^{a},n^{a},m^{a},{\bar {m}}^{a}\}}
可以用余矢量代替,方程仍然成立。
Weyl–NP 和 Ricci–NP 标量[ 编辑 ]
Weyl 张量的 10 个独立分量可以编码为 5 个复数Weyl-NP 标量,
Ψ
0
:=
C
a
b
c
d
ℓ
a
m
b
ℓ
c
m
d
,
Ψ
1
:=
C
a
b
c
d
ℓ
a
n
b
ℓ
c
m
d
,
Ψ
2
:=
C
a
b
c
d
ℓ
a
m
b
m
¯
c
n
d
,
Ψ
3
:=
C
a
b
c
d
ℓ
a
n
b
m
¯
c
n
d
,
Ψ
4
:=
C
a
b
c
d
n
a
m
¯
b
n
c
m
¯
d
.
{\displaystyle {\begin{aligned}\Psi _{0}&:=C_{abcd}\ell ^{a}m^{b}\ell ^{c}m^{d}\,,&\Psi _{1}&:=C_{abcd}\ell ^{a}n^{b}\ell ^{c}m^{d}\,,\\\Psi _{2}&:=C_{abcd}\ell ^{a}m^{b}{\bar {m}}^{c}n^{d}\,,&\Psi _{3}&:=C_{abcd}\ell ^{a}n^{b}{\bar {m}}^{c}n^{d}\,,\\\Psi _{4}&:=C_{abcd}n^{a}{\bar {m}}^{b}n^{c}{\bar {m}}^{d}\,.\end{aligned}}}
Ricci 张量 的 10 个独立分量被编码为 4 个实 标量
{
Φ
00
{\displaystyle \{\Phi _{00}}
,
Φ
11
{\displaystyle \Phi _{11}}
,
Φ
22
{\displaystyle \Phi _{22}}
,
Λ
}
{\displaystyle \Lambda \}}
和 3 个复数 标量
{
Φ
10
,
Φ
20
,
Φ
21
}
{\displaystyle \{\Phi _{10},\Phi _{20},\Phi _{21}\}}
(及其复共轭),
Φ
00
:=
1
2
R
a
b
ℓ
a
ℓ
b
,
Φ
11
:=
1
4
R
a
b
(
ℓ
a
n
b
+
m
a
m
¯
b
)
,
Φ
22
:=
1
2
R
a
b
n
a
n
b
,
Λ
:=
1
24
R
;
{\displaystyle {\begin{aligned}\Phi _{00}&:={\tfrac {1}{2}}R_{ab}\ell ^{a}\ell ^{b}\,,&\Phi _{11}&:={\tfrac {1}{4}}R_{ab}\left(\ell ^{a}n^{b}+m^{a}{\bar {m}}^{b}\right),\\[1ex]\Phi _{22}&:={\tfrac {1}{2}}R_{ab}n^{a}n^{b}\,,&\Lambda &:={\tfrac {1}{24}}R\,;\end{aligned}}}
Φ
01
:=
1
2
R
a
b
ℓ
a
m
b
,
Φ
10
:=
1
2
R
a
b
ℓ
a
m
¯
b
=
Φ
01
¯
,
Φ
02
:=
1
2
R
a
b
m
a
m
b
,
Φ
20
:=
1
2
R
a
b
m
¯
a
m
¯
b
=
Φ
02
¯
,
Φ
12
:=
1
2
R
a
b
m
a
n
b
,
Φ
21
:=
1
2
R
a
b
m
¯
a
n
b
=
Φ
12
¯
.
{\displaystyle {\begin{aligned}\Phi _{01}&:={\tfrac {1}{2}}R_{ab}\ell ^{a}m^{b}\,,&\Phi _{10}&:={\tfrac {1}{2}}R_{ab}\ell ^{a}{\bar {m}}^{b}={\overline {\Phi _{01}}}\,,\\\Phi _{02}&:={\tfrac {1}{2}}R_{ab}m^{a}m^{b}\,,&\Phi _{20}&:={\tfrac {1}{2}}R_{ab}{\bar {m}}^{a}{\bar {m}}^{b}={\overline {\Phi _{02}}}\,,\\\Phi _{12}&:={\tfrac {1}{2}}R_{ab}m^{a}n^{b}\,,&\Phi _{21}&:={\tfrac {1}{2}}R_{ab}{\bar {m}}^{a}n^{b}={\overline {\Phi _{12}}}\,.\end{aligned}}}
在这些定义中,
R
a
b
{\displaystyle R_{ab}}
可以用其无痕 部分代替
Q
a
b
=
R
a
b
−
1
4
g
a
b
R
{\textstyle Q_{ab}=R_{ab}-{\tfrac {1}{4}}g_{ab}R}
或爱因斯坦张量
G
a
b
=
R
a
b
−
1
2
g
a
b
R
{\textstyle G_{ab}=R_{ab}-{\tfrac {1}{2}}g_{ab}R}
因为关系正常化。还,
Φ
11
{\displaystyle \Phi _{11}}
简化为
Φ
11
=
1
2
R
a
b
ℓ
a
n
b
=
1
2
R
a
b
m
a
m
¯
b
{\textstyle \Phi _{11}={\tfrac {1}{2}}R_{ab}\ell ^{a}n^{b}={\tfrac {1}{2}}R_{ab}m^{a}{\bar {m}}^{b}}
用于电真空(
Λ
=
0
{\displaystyle \Lambda =0}
)。
在复零四元组中,里奇恒等式产生下列 NP 场方程,连接自旋系数、Weyl-NP 和 Ricci-NP 标量(回想一下,在正交四元组中,里奇旋转系数将遵循嘉当第一和第二结构方程),
各种符号的这些方程可以在多篇文献中找到。 [ 3] :46–47(310(a)-(r)) :671–672(E.12) Frolov 和 Novikov [ 13] 中的符号相同。
D
ρ
−
δ
¯
κ
=
(
ρ
2
+
σ
σ
¯
)
+
(
ε
+
ε
¯
)
ρ
−
κ
¯
τ
−
κ
(
3
α
+
β
¯
−
π
)
+
Φ
00
,
D
σ
−
δ
κ
=
(
ρ
+
ρ
¯
)
σ
+
(
3
ε
−
ε
¯
)
σ
−
(
τ
−
π
¯
+
α
¯
+
3
β
)
κ
+
Ψ
0
,
D
τ
−
Δ
κ
=
(
τ
+
π
¯
)
ρ
+
(
τ
¯
+
π
)
σ
+
(
ε
−
ε
¯
)
τ
−
(
3
γ
+
γ
¯
)
κ
+
Ψ
1
+
Φ
01
,
D
α
−
δ
¯
ε
=
(
ρ
+
ε
¯
−
2
ε
)
α
+
β
σ
¯
−
β
¯
ε
−
κ
λ
−
κ
¯
γ
+
(
ε
+
ρ
)
π
+
Φ
10
,
D
β
−
δ
ε
=
(
α
+
π
)
σ
+
(
ρ
¯
−
ε
¯
)
β
−
(
μ
+
γ
)
κ
−
(
α
¯
−
π
¯
)
ε
+
Ψ
1
,
D
γ
−
Δ
ε
=
(
τ
+
π
¯
)
α
+
(
τ
¯
+
π
)
β
−
(
ε
+
ε
¯
)
γ
−
(
γ
+
γ
¯
)
ε
+
τ
π
−
ν
κ
+
Ψ
2
+
Φ
11
−
Λ
,
D
λ
−
δ
¯
π
=
(
ρ
λ
+
σ
¯
μ
)
+
π
2
+
(
α
−
β
¯
)
π
−
ν
κ
¯
−
(
3
ε
−
ε
¯
)
λ
+
Φ
20
,
D
μ
−
δ
π
=
(
ρ
¯
μ
+
σ
λ
)
+
π
π
¯
−
(
ε
+
ε
¯
)
μ
−
(
α
¯
−
β
)
π
−
ν
κ
+
Ψ
2
+
2
Λ
,
D
ν
−
Δ
π
=
(
π
+
τ
¯
)
μ
+
(
π
¯
+
τ
)
λ
+
(
γ
−
γ
¯
)
π
−
(
3
ε
+
ε
¯
)
ν
+
Ψ
3
+
Φ
21
,
Δ
λ
−
δ
¯
ν
=
−
(
μ
+
μ
¯
)
λ
−
(
3
γ
−
γ
¯
)
λ
+
(
3
α
+
β
¯
+
π
−
τ
¯
)
ν
−
Ψ
4
,
δ
ρ
−
δ
¯
σ
=
ρ
(
α
¯
+
β
)
−
σ
(
3
α
−
β
¯
)
+
(
ρ
−
ρ
¯
)
τ
+
(
μ
−
μ
¯
)
κ
−
Ψ
1
+
Φ
01
,
δ
α
−
δ
¯
β
=
(
μ
ρ
−
λ
σ
)
+
α
α
¯
+
β
β
¯
−
2
α
β
+
γ
(
ρ
−
ρ
¯
)
+
ε
(
μ
−
μ
¯
)
−
Ψ
2
+
Φ
11
+
Λ
,
δ
λ
−
δ
¯
μ
=
(
ρ
−
ρ
¯
)
ν
+
(
μ
−
μ
¯
)
π
+
(
α
+
β
¯
)
μ
+
(
α
¯
−
3
β
)
λ
−
Ψ
3
+
Φ
21
,
δ
ν
−
Δ
μ
=
(
μ
2
+
λ
λ
¯
)
+
(
γ
+
γ
¯
)
μ
−
ν
¯
π
+
(
τ
−
3
β
−
α
¯
)
ν
+
Φ
22
,
δ
γ
−
Δ
β
=
(
τ
−
α
¯
−
β
)
γ
+
μ
τ
−
σ
ν
−
ε
ν
¯
−
(
γ
−
γ
¯
−
μ
)
β
+
α
λ
¯
+
Φ
12
,
δ
τ
−
Δ
σ
=
(
μ
σ
+
λ
¯
ρ
)
+
(
τ
+
β
−
α
¯
)
τ
−
(
3
γ
−
γ
¯
)
σ
−
κ
ν
¯
+
Φ
02
,
Δ
ρ
−
δ
¯
τ
=
−
(
ρ
μ
¯
+
σ
λ
)
+
(
β
¯
−
α
−
τ
¯
)
τ
+
(
γ
+
γ
¯
)
ρ
+
ν
κ
−
Ψ
2
−
2
Λ
,
Δ
α
−
δ
¯
γ
=
(
ρ
+
ε
)
ν
−
(
τ
+
β
)
λ
+
(
γ
¯
−
μ
¯
)
α
+
(
β
¯
−
τ
¯
)
γ
−
Ψ
3
.
{\displaystyle {\begin{aligned}D\rho -{\bar {\delta }}\kappa &=(\rho ^{2}+\sigma {\bar {\sigma }})+(\varepsilon +{\bar {\varepsilon }})\rho -{\bar {\kappa }}\tau -\kappa (3\alpha +{\bar {\beta }}-\pi )+\Phi _{00}\,,\\[1ex]D\sigma -\delta \kappa &=(\rho +{\bar {\rho }})\sigma +(3\varepsilon -{\bar {\varepsilon }})\sigma -(\tau -{\bar {\pi }}+{\bar {\alpha }}+3\beta )\kappa +\Psi _{0}\,,\\[1ex]D\tau -\Delta \kappa &=(\tau +{\bar {\pi }})\rho +({\bar {\tau }}+\pi )\sigma +(\varepsilon -{\bar {\varepsilon }})\tau -(3\gamma +{\bar {\gamma }})\kappa +\Psi _{1}+\Phi _{01}\,,\\[1ex]D\alpha -{\bar {\delta }}\varepsilon &=(\rho +{\bar {\varepsilon }}-2\varepsilon )\alpha +\beta {\bar {\sigma }}-{\bar {\beta }}\varepsilon -\kappa \lambda -{\bar {\kappa }}\gamma +(\varepsilon +\rho )\pi +\Phi _{10}\,,\\[1ex]D\beta -\delta \varepsilon &=(\alpha +\pi )\sigma +({\bar {\rho }}-{\bar {\varepsilon }})\beta -(\mu +\gamma )\kappa -({\bar {\alpha }}-{\bar {\pi }})\varepsilon +\Psi _{1}\,,\\[1ex]D\gamma -\Delta \varepsilon &=(\tau +{\bar {\pi }})\alpha +({\bar {\tau }}+\pi )\beta -(\varepsilon +{\bar {\varepsilon }})\gamma -(\gamma +{\bar {\gamma }})\varepsilon +\tau \pi -\nu \kappa +\Psi _{2}+\Phi _{11}-\Lambda \,,\\[1ex]D\lambda -{\bar {\delta }}\pi &=(\rho \lambda +{\bar {\sigma }}\mu )+\pi ^{2}+(\alpha -{\bar {\beta }})\pi -\nu {\bar {\kappa }}-(3\varepsilon -{\bar {\varepsilon }})\lambda +\Phi _{20}\,,\\[1ex]D\mu -\delta \pi &=({\bar {\rho }}\mu +\sigma \lambda )+\pi {\bar {\pi }}-(\varepsilon +{\bar {\varepsilon }})\mu -({\bar {\alpha }}-\beta )\pi -\nu \kappa +\Psi _{2}+2\Lambda \,,\\[1ex]D\nu -\Delta \pi &=(\pi +{\bar {\tau }})\mu +({\bar {\pi }}+\tau )\lambda +(\gamma -{\bar {\gamma }})\pi -(3\varepsilon +{\bar {\varepsilon }})\nu +\Psi _{3}+\Phi _{21}\,,\\[1ex]\Delta \lambda -{\bar {\delta }}\nu &=-(\mu +{\bar {\mu }})\lambda -(3\gamma -{\bar {\gamma }})\lambda +(3\alpha +{\bar {\beta }}+\pi -{\bar {\tau }})\nu -\Psi _{4}\,,\\[1ex]\delta \rho -{\bar {\delta }}\sigma &=\rho ({\bar {\alpha }}+\beta )-\sigma (3\alpha -{\bar {\beta }})+(\rho -{\bar {\rho }})\tau +(\mu -{\bar {\mu }})\kappa -\Psi _{1}+\Phi _{01}\,,\\[1ex]\delta \alpha -{\bar {\delta }}\beta &=(\mu \rho -\lambda \sigma )+\alpha {\bar {\alpha }}+\beta {\bar {\beta }}-2\alpha \beta +\gamma (\rho -{\bar {\rho }})+\varepsilon (\mu -{\bar {\mu }})-\Psi _{2}+\Phi _{11}+\Lambda \,,\\[1ex]\delta \lambda -{\bar {\delta }}\mu &=(\rho -{\bar {\rho }})\nu +(\mu -{\bar {\mu }})\pi +(\alpha +{\bar {\beta }})\mu +({\bar {\alpha }}-3\beta )\lambda -\Psi _{3}+\Phi _{21}\,,\\[1ex]\delta \nu -\Delta \mu &=(\mu ^{2}+\lambda {\bar {\lambda }})+(\gamma +{\bar {\gamma }})\mu -{\bar {\nu }}\pi +(\tau -3\beta -{\bar {\alpha }})\nu +\Phi _{22}\,,\\[1ex]\delta \gamma -\Delta \beta &=(\tau -{\bar {\alpha }}-\beta )\gamma +\mu \tau -\sigma \nu -\varepsilon {\bar {\nu }}-(\gamma -{\bar {\gamma }}-\mu )\beta +\alpha {\bar {\lambda }}+\Phi _{12}\,,\\[1ex]\delta \tau -\Delta \sigma &=(\mu \sigma +{\bar {\lambda }}\rho )+(\tau +\beta -{\bar {\alpha }})\tau -(3\gamma -{\bar {\gamma }})\sigma -\kappa {\bar {\nu }}+\Phi _{02}\,,\\[1ex]\Delta \rho -{\bar {\delta }}\tau &=-(\rho {\bar {\mu }}+\sigma \lambda )+({\bar {\beta }}-\alpha -{\bar {\tau }})\tau +(\gamma +{\bar {\gamma }})\rho +\nu \kappa -\Psi _{2}-2\Lambda \,,\\[1ex]\Delta \alpha -{\bar {\delta }}\gamma &=(\rho +\varepsilon )\nu -(\tau +\beta )\lambda +({\bar {\gamma }}-{\bar {\mu }})\alpha +({\bar {\beta }}-{\bar {\tau }})\gamma -\Psi _{3}\,.\end{aligned}}}
此外,Weyl-NP标量
Ψ
i
{\displaystyle \Psi _{i}}
和 Ricci-NP 标量
Φ
i
j
{\displaystyle \Phi _{ij}}
可以在获得自旋系数后,从上述 NP 场方程间接计算出来,而不必直接使用它们的定义。
麦克斯韦–NP 标量、NP 形式中的麦克斯韦方程[ 编辑 ]
法拉第-麦克斯韦2形式的六个独立分量(即电磁场强度张量 )
F
a
b
{\displaystyle F_{ab}}
可以编码成三个复数 Maxwell-NP 标量
ϕ
0
:=
F
a
b
ℓ
a
m
b
,
ϕ
1
:=
1
2
F
a
b
(
ℓ
a
n
b
+
m
¯
a
m
b
)
,
ϕ
2
:=
F
a
b
m
¯
a
n
b
,
{\displaystyle \phi _{0}:=F_{ab}\ell ^{a}m^{b}\,,\quad \phi _{1}:={\tfrac {1}{2}}F_{ab}\left(\ell ^{a}n^{b}+{\bar {m}}^{a}m^{b}\right),\quad \phi _{2}:=F_{ab}{\bar {m}}^{a}n^{b}\,,}
因此八个实麦克斯韦方程
d
F
=
0
{\displaystyle d\mathbf {F} =0}
和
d
⋆
F
=
0
{\displaystyle d^{\star }\mathbf {F} =0}
(作为
F
=
d
A
{\displaystyle \mathbf {F} =dA}
)可以转化为四个复方程,
D
ϕ
1
−
δ
¯
ϕ
0
=
(
π
−
2
α
)
ϕ
0
+
2
ρ
ϕ
1
−
κ
ϕ
2
,
D
ϕ
2
−
δ
¯
ϕ
1
=
−
λ
ϕ
0
+
2
π
ϕ
1
+
(
ρ
−
2
ε
)
ϕ
2
,
Δ
ϕ
0
−
δ
ϕ
1
=
(
2
γ
−
μ
)
ϕ
0
−
2
τ
ϕ
1
+
σ
ϕ
2
,
Δ
ϕ
1
−
δ
ϕ
2
=
ν
ϕ
0
−
2
μ
ϕ
1
+
(
2
β
−
τ
)
ϕ
2
,
{\displaystyle {\begin{aligned}D\phi _{1}-{\bar {\delta }}\phi _{0}&=(\pi -2\alpha )\phi _{0}+2\rho \phi _{1}-\kappa \phi _{2}\,,\\[1ex]D\phi _{2}-{\bar {\delta }}\phi _{1}&=-\lambda \phi _{0}+2\pi \phi _{1}+(\rho -2\varepsilon )\phi _{2}\,,\\[1ex]\Delta \phi _{0}-\delta \phi _{1}&=(2\gamma -\mu )\phi _{0}-2\tau \phi _{1}+\sigma \phi _{2}\,,\\[1ex]\Delta \phi _{1}-\delta \phi _{2}&=\nu \phi _{0}-2\mu \phi _{1}+(2\beta -\tau )\phi _{2}\,,\end{aligned}}}
使用 Ricci-NP 标量
Φ
i
j
{\displaystyle \Phi _{ij}}
与麦克斯韦标量相关
Φ
i
j
=
2
ϕ
i
ϕ
j
¯
,
(
i
,
j
∈
{
0
,
1
,
2
}
)
.
{\displaystyle \Phi _{ij}=\,2\,\phi _{i}\,{\overline {\phi _{j}}}\,,\quad (i,j\in \{0,1,2\})\,.}
值得指出的是,补充方程
Φ
i
j
=
2
ϕ
i
ϕ
j
¯
{\displaystyle \Phi _{ij}=2\,\phi _{i}\,{\overline {\phi _{j}}}}
只对电磁场有效;例如,在杨-米尔斯场的情况下,
Φ
i
j
=
Tr
(
ϝ
i
ϝ
¯
j
)
{\displaystyle \Phi _{ij}=\,{\text{Tr}}\,(\digamma _{i}\,{\bar {\digamma }}_{j})}
在哪里
ϝ
i
(
i
∈
{
0
,
1
,
2
}
)
{\displaystyle \digamma _{i}(i\in \{0,1,2\})}
是 Yang-Mills-NP 标量。
综上所述,上述传输方程、NP场方程和麦克斯韦-NP方程共同构成了纽曼-彭罗斯形式中的爱因斯坦-麦克斯韦方程。
Weyl 标量
Ψ
4
{\displaystyle \Psi _{4}}
Newman & Penrose 将其定义为
Ψ
4
=
−
C
α
β
γ
δ
n
α
m
¯
β
n
γ
m
¯
δ
{\displaystyle \Psi _{4}=-C_{\alpha \beta \gamma \delta }n^{\alpha }{\bar {m}}^{\beta }n^{\gamma }{\bar {m}}^{\delta }}
(但请注意,整体符号是任意的,并且 Newman & Penrose 使用了“类时间”度量符号
(
+
,
−
,
−
,
−
)
{\displaystyle (+,-,-,-)}
)。在空旷的空间中,爱因斯坦场方程 简化为
R
α
β
=
0
{\displaystyle R_{\alpha \beta }=0}
。从韦尔张量的定义中,我们可以看出这意味着它等于黎曼张量 ,
C
α
β
γ
δ
=
R
α
β
γ
δ
{\displaystyle C_{\alpha \beta \gamma \delta }=R_{\alpha \beta \gamma \delta }}
。我们可以对无穷远处的四元组做出标准选择:
ℓ
μ
=
1
2
(
t
^
+
r
^
)
,
{\displaystyle \ell ^{\mu }={\frac {1}{\sqrt {2}}}\left({\hat {t}}+{\hat {r}}\right)\ ,}
n
μ
=
1
2
(
t
^
−
r
^
)
,
{\displaystyle n^{\mu }={\frac {1}{\sqrt {2}}}\left({\hat {t}}-{\hat {r}}\right)\ ,}
m
μ
=
1
2
(
θ
^
+
i
ϕ
^
)
.
{\displaystyle m^{\mu }={\frac {1}{\sqrt {2}}}\left({\hat {\theta }}+i{\hat {\phi }}\right)\ .}
在横向无迹规范中,简单的计算表明线性引力波 与黎曼张量的分量的关系为
1
4
(
h
¨
θ
^
θ
^
−
h
¨
ϕ
^
ϕ
^
)
=
−
R
t
^
θ
^
t
^
θ
^
=
−
R
t
^
ϕ
^
r
^
ϕ
^
=
−
R
r
^
θ
^
r
^
θ
^
=
R
t
^
ϕ
^
t
^
ϕ
^
=
R
t
^
θ
^
r
^
θ
^
=
R
r
^
ϕ
^
r
^
ϕ
^
,
{\displaystyle {\tfrac {1}{4}}\left({\ddot {h}}_{{\hat {\theta }}{\hat {\theta }}}-{\ddot {h}}_{{\hat {\phi }}{\hat {\phi }}}\right)=-R_{{\hat {t}}{\hat {\theta }}{\hat {t}}{\hat {\theta }}}=-R_{{\hat {t}}{\hat {\phi }}{\hat {r}}{\hat {\phi }}}=-R_{{\hat {r}}{\hat {\theta }}{\hat {r}}{\hat {\theta }}}=R_{{\hat {t}}{\hat {\phi }}{\hat {t}}{\hat {\phi }}}=R_{{\hat {t}}{\hat {\theta }}{\hat {r}}{\hat {\theta }}}=R_{{\hat {r}}{\hat {\phi }}{\hat {r}}{\hat {\phi }}}\ ,}
1
2
h
¨
θ
^
ϕ
^
=
−
R
t
^
θ
^
t
^
ϕ
^
=
−
R
r
^
θ
^
r
^
ϕ
^
=
R
t
^
θ
^
r
^
ϕ
^
=
R
r
^
θ
^
t
^
ϕ
^
,
{\displaystyle {\tfrac {1}{2}}{\ddot {h}}_{{\hat {\theta }}{\hat {\phi }}}=-R_{{\hat {t}}{\hat {\theta }}{\hat {t}}{\hat {\phi }}}=-R_{{\hat {r}}{\hat {\theta }}{\hat {r}}{\hat {\phi }}}=R_{{\hat {t}}{\hat {\theta }}{\hat {r}}{\hat {\phi }}}=R_{{\hat {r}}{\hat {\theta }}{\hat {t}}{\hat {\phi }}}\ ,}
假设传播在
r
^
{\displaystyle {\hat {r}}}
方向。结合这些,并使用定义
Ψ
4
{\displaystyle \Psi _{4}}
上面,我们可以写
Ψ
4
=
1
2
(
h
¨
θ
^
θ
^
−
h
¨
ϕ
^
ϕ
^
)
+
i
h
¨
θ
^
ϕ
^
=
−
h
¨
+
+
i
h
¨
×
.
{\displaystyle \Psi _{4}={\tfrac {1}{2}}\left({\ddot {h}}_{{\hat {\theta }}{\hat {\theta }}}-{\ddot {h}}_{{\hat {\phi }}{\hat {\phi }}}\right)+i{\ddot {h}}_{{\hat {\theta }}{\hat {\phi }}}=-{\ddot {h}}_{+}+i{\ddot {h}}_{\times }\,.}
远离源头,在几乎平坦的空间中,场
h
+
{\displaystyle h_{+}}
和
h
×
{\displaystyle h_{\times }}
对沿给定方向传播的引力辐射的所有内容进行编码。因此,我们看到
Ψ
4
{\displaystyle \Psi _{4}}
在单个复杂场中对有关(传出的)引力波的所有内容进行编码。
使用 Thorne 总结的波生成形式[ 16] ,我们可以用质量多极子 、电流多极子 和自旋加权球谐函数非常紧凑地写出辐射场:
Ψ
4
(
t
,
r
,
θ
,
ϕ
)
=
−
1
r
2
∑
ℓ
=
2
∞
∑
m
=
−
ℓ
ℓ
[
(
ℓ
+
2
)
I
ℓ
m
(
t
−
r
)
−
i
(
ℓ
+
2
)
S
ℓ
m
(
t
−
r
)
]
−
2
Y
ℓ
m
(
θ
,
ϕ
)
.
{\displaystyle \Psi _{4}(t,r,\theta ,\phi )=-{\frac {1}{r{\sqrt {2}}}}\sum _{\ell =2}^{\infty }\sum _{m=-\ell }^{\ell }\left[{}^{(\ell +2)}I^{\ell m}(t-r)-i\ {}^{(\ell +2)}S^{\ell m}(t-r)\right]{}_{-2}Y_{\ell m}(\theta ,\phi )\ .}
这里,前缀上标表示时间导数。也就是说,我们定义
(
ℓ
)
G
(
t
)
=
(
d
d
t
)
ℓ
G
(
t
)
.
{\displaystyle {}^{(\ell )}G(t)=\left({\frac {d}{dt}}\right)^{\ell }G(t)\ .}
组件
I
ℓ
m
{\displaystyle I^{\ell m}}
和
S
ℓ
m
{\displaystyle S^{\ell m}}
分别是质量和电流多极子。
−
2
Y
ℓ
m
{\displaystyle {}_{-2}Y_{\ell m}}
是自旋重量 −2 球谐函数。
光锥坐标
GHP 形式体系
四元组形式体系
戈德堡-萨克斯定理
^ 1.0 1.1 1.2 1.3 Ezra T. Newman and Roger Penrose. An Approach to Gravitational Radiation by a Method of Spin Coefficients. Journal of Mathematical Physics. 1962, 3 (3): 566–768. Bibcode:1962JMP.....3..566N . doi:10.1063/1.1724257 . The original paper by Newman and Penrose, which introduces the formalism, and uses it to derive example results.
^ 2.0 2.1 2.2 Ezra T Newman, Roger Penrose. Errata: An Approach to Gravitational Radiation by a Method of Spin Coefficients . Journal of Mathematical Physics, 1963, 4 (7): 998.
^ 3.0 3.1 Chandrasekhar, S. The Mathematical Theory of Black Holes Oxford Classics Series. Oxford University Press. 1998: 40 [31 May 2019] . ISBN 0-19850370-9 . The Newman–Penrose formalism is a tetrad formalism with a special choice of the basis vectors.
^ Saul Teukolsky. Perturbations of a rotating black hole. Astrophysical Journal. 1973, 185 : 635–647. Bibcode:1973ApJ...185..635T . doi:10.1086/152444 .
^ Peter O'Donnell. Introduction to 2-Spinors in General Relativity . Singapore: World Scientific, 2003.
^ Subrahmanyan Chandrasekhar. The Mathematical Theory of Black Holes . Chicago: University of Chikago Press, 1983.
^ J B Griffiths. Colliding Plane Waves in General Relativity . Oxford: Oxford University Press, 1991.
^ Ivan Booth. Black hole boundaries . Canadian Journal of Physics, 2005, 83 (11): 1073-1099. [arxiv.org/abs/gr-qc/0508107 arXiv:gr-qc/0508107v2]
^ Abhay Ashtekar, Christopher Beetle, Jerzy Lewandowski. Geometry of generic isolated horizons . Classical and Quantum Gravity, 2002, 19 (6): 1195-1225. arXiv:gr-qc/0111067v2
^ Abhay Ashtekar, Badri Krishnan. Dynamical horizons: energy, angular momentum, fluxes and balance laws . Physical Review Letters, 2002, 89 (26): 261101. [arxiv.org/abs/gr-qc/0207080 arXiv:gr-qc/0207080v3]
^ Abhay Ashtekar, Badri Krishnan. Dynamical horizons and their properties . Physical Review D, 2003, 68 (10): 104030. [arxiv.org/abs/gr-qc/0308033 arXiv:gr-qc/0308033v4]
^ Jeremy Bransom Griffiths, Jiri Podolsky. Exact Space-Times in Einstein's General Relativity . Cambridge: Cambridge University Press, 2009. Chapter 2.
^ 13.0 13.1 Valeri P Frolov, Igor D Novikov. Black Hole Physics: Basic Concepts and New Developments . Berlin: Springer, 1998. Appendix E.
^ Abhay Ashtekar, Stephen Fairhurst, Badri Krishnan. Isolated horizons: Hamiltonian evolution and the first law . Physical Review D, 2000, 62 (10): 104025. Appendix B. gr-qc/0005083
^ Robert M. Wald. General Relativity . 1984. ISBN 9780226870335 .
^ Thorne, Kip S. Multipole expansions of gravitational radiation (PDF) . Rev. Mod. Phys. April 1980, 52 (2): 299–339. Bibcode:1980RvMP...52..299T . doi:10.1103/RevModPhys.52.299 . A broad summary of the mathematical formalism used in the literature on gravitational radiation.
[[Category:廣義相對論]]
[[Category:數學表示法]]
[[Category:相对论]]
[[Category:罗杰·彭罗斯]]