數學中,拓撲 K-理論(topological K-theory)是代數拓撲的一個分支。它是研究一般拓撲空間上向量叢時發現的,所用的是由亞歷山大·格羅滕迪克引入的現在稱為(一般)K-理論的想法。早期拓撲 K-理論的工作歸於麥可·阿蒂亞與弗里德里希·希策布魯赫。
拓撲 K-理論是緊豪斯多夫空間範疇的一種廣義上同調理論,將一個空間上的向量叢按穩定等價分類(向量叢稱為穩定等價的若且唯若同構的向量叢由向量叢與平凡向量叢的惠特尼和生成[1])。設 X 是一個緊豪斯多夫空間而
或
。則
是 X 上有限維
-向量叢的同構類在運算
,對向量叢 E 與 F,
下交換么半群的格羅滕迪克群。通常
在復情形記作
,復情形記作
。
更確切地,穩定等價,X 上叢 E 與 F 上的等價關係,定義了 K(X) 中同樣的元素,出現於存在一個平凡叢 G 使得

在向量叢的張量積下 K(X) 成為一個交換環。
向量叢的秩帶入 K-群中定義了同態

這裡
是切赫上同調的 0-群,等於取值於
中的局部常值函數群。
如果 X 有一個特殊的基點 x0,則約化 K-群(與約化同調比較)滿足

定義為
(這裡
是基點包含)的核或
的余核(這裡
是常映射)。
當 X 是連通空間是,
。
函子 K 的定義擴張成緊空間的範疇偶(一個對象是一個偶
,
緊而
閉,
與
間的態射是一個連續映射
使得
)。

約化 K-群有
給出。
定義

對
給出了 K-群序列,這裡 S 表示約化緯垂。
是一個反變函子。
的分類空間是
(復情形為 BO;復情形為 BU),即
。
的分類空間是
(
帶著離散拓撲),即
。
- 存在一個自然環同態
,陳特徵標,使得
是一個同構。
- 拓撲 K-理論可推廣為 C*-代數上一個函子,參見算子K-理論與 KK-理論。
周期性現象冠以拉烏爾·博特之名(參見博特周期性定理),可作如下表述:
and
這裡
是
上的重言叢類,即黎曼球面作為復射影直線。


在實K-理論中有類似的周期性,不過是模 8。
- ^ Weisstein, Eric W. (編). Stable Equivalence. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. [2009-06-05]. (原始內容存檔於2019-10-30) (英語).
- M. Karoubi, K-theory, an introduction, 1978 - Berlin; New York: Springer-Verlag
- M.F. Atiyah, D.W. Anderson K-Theory 1967 - New York, WA Benjamin