全球地表靜化
外觀
全球地表靜化 (英文:Global terrestrial stilling) ,指 1980 年到 2010 年期間,在地球的地表附近觀測到的風速下降。[1][2]近地面風速下降主要影響南北半球的中緯度地區。全球平均風速以 -0.140 m/s•dec−1 的速度遞減 (即每10年下降0.1米每秒的風速),過去五十年間下降幅度達5%至15%。[3]高緯度地區 (緯度> 75°) 則呈現風速上升趨勢。 與陸地表面觀測到的風力減弱相反,海洋區域的風力呈現增強趨勢。[4][5] 然而,自 2010 年前後開始,風速的下降趨勢在部分區域出現了逆轉。[2][6][7]
地表靜化的真正原因尚無定論,其主要的因素有兩個:
由於氣候變化,地表靜化目前已成為社會關注的潛在問題,因為它不僅會影響到風力發電、農業、水文和生態環境,還與災害、空氣品質和人類健康等眾多領域密切相關。
原因
[編輯]地表靜化的原因尚無定論。它可能是由於多種因素同時相互作用,且這些因素可能隨空間和時間而變化。
科學家指出,影響風速減緩的主要原因包括:
- 地表粗糙度增加(如森林生長、土地利用變化和城市化)。在氣象站附近,類似風速計的測量儀器會增強空氣流動時遇到的摩擦力,從而導致低層風速進一步減弱。 [8] [9] [10]
- 大氣環流在較大尺度上的變化。例如哈德利環流向極地擴張[11] ,以及主導近地面風速變化的反氣旋和氣旋的漂移。 [12] [13] [14]
- 風速測量方法的變化。比如風速計設備的老化和誤差、風速計的技術改進、風速計高度的變化 [15]、測量地點的轉移、監測站周圍環境的變化、儀器校準時的問題、以及測量時間間隔。 [16]
- 「全球暗化」,由於氣膠和溫室氣體濃度增加,使得到達地球表面的太陽輻射量減少,大氣趨於穩定,導致風力減弱,地表靜化。 [17]
影響
[編輯]地表靜化現象的影響具有重要的科學、社會經濟及環境意義,涉及大氣與海洋動力學及諸多相關領域,包括:
然而,就風能而言,近地表風速觀測主要集中在離地 10 米範圍內,而風力渦輪機通常位於地表以上 60 至 80 米處,因此該領域仍需更多研究。還需在高海拔地區開展更多研究,這些地區通常被稱為"水塔",是世界淡水供應的主要來源地。 [24] [25]研究表明,高海拔地區的風速下降速度比低海拔地區記錄的變化更為顯著 [26]而且,已有幾篇中國論文證明了青藏高原的這一情況。 [27]
參見
[編輯]- ^ Roderick ML, Rotstayn LD, Farquhar GD, Hobbins MT (2007) On the attribution of changing pan evaporation. Geophys Res Lett 34(17): L17403. doi:10.1029/2007GL031166
- ^ 2.0 2.1 Zeng, Zhenzhong; Ziegler, Alan D.; Searchinger, Timothy; Yang, Long; Chen, Anping; Ju, Kunlu; Piao, Shilong; Li, Laurent Z. X.; Ciais, Philippe; Chen, Deliang; Liu, Junguo; Azorin-Molina, Cesar; Chappell, Adrian; Medvigy, David; Wood, Eric F. A reversal in global terrestrial stilling and its implications for wind energy production. Nature Climate Change. 2019, 9 (12): 979–985. Bibcode:2019NatCC...9..979Z. ISSN 1758-678X. doi:10.1038/s41558-019-0622-6. hdl:10261/207992
(英語).
- ^ McVicar TR, Roderick ML, Donohue RJ, Li LT, Van Niel TG, Thomas A, Grieser J, Jhajharia D, Himri Y, Mahowald NM, Mescherskaya AV, Kruger AC, Rehman S, Dinpashoh Y (2012) Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J Hydrol 416–417: 182–205. doi:10.1016/j.jhydrol.2011.10.024
- ^ Wentz FJ, Ricciardulli L, Hilburn K, Mears C (2007) How much more rain will global warming bring? Science 317(5835): 233–235. doi:10.1126/science.1140746
- ^ Young IR, Zieger S, Babanin AV (2011) Global trends in wind speed and wave height. Science 332(6028): 451–455. doi:10.1126/science.1197219.
- ^ Wohland, Jan; Folini, Doris; Pickering, Bryn. Wind speed stilling and its recovery due to internal climate variability. Earth System Dynamics. 2021-11-24, 12 (4): 1239–1251. Bibcode:2021ESD....12.1239W. ISSN 2190-4979. doi:10.5194/esd-12-1239-2021
. hdl:20.500.11850/517538
(English).
- ^ 楊慶; 李明星; 祖子清; 馬柱國. 中国区域的地表风速还在减弱吗?. 中國科學: 地球科學. 2021-06-07, 51 (7) [2025-06-01]. ISSN 1674-7240. doi:10.1360/SSTe-2020-0228 (中文(中國大陸)).
- ^ Vautard R, Cattiaux J, Yiou P, Thépaut JN, Ciais P (2010) Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat Geosci 3(11): 756–761. doi:10.1038/ngeo979
- ^ Bichet A, Wild M, Folini D, Schär C (2012) Causes for decadal variations of wind speed over land: Sensitivity studies with a global climate model. Geophys Res Lett 39(11): L11701. doi:10.1029/2012GL051685
- ^ Wever N (2012) Quantifying trends in surface roughness and the effect on surface wind speed observations. J Geophys Res – Atmos 117(D11): D11104. doi:10.1029/2011JD017118.
- ^ Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, doi:10.1029/2006GL028443.
- ^ Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warning. Geophys Res Lett 34(6): L06805. doi:10.1029/2006GL028443.
- ^ Azorin-Molina C, Vicente-Serrano SM, McVicar TR, Jerez S, Sanchez-Lorenzo A, López-Moreno JI, Revuelto J, Trigo RM, Lopez-Bustins JA, Espirito-Santo F (2014) Homogenization and assessment of observed near-surface wind speed trends over Spain and Portugal, 1961–2011. J Climate 27 (10): 3692–3712. doi:10.1175/JCLI-D-13-00652.1
- ^ Azorin-Molina C, Guijarro JA, McVicar TR, Vicente-Serrano SM, Chen D, Jerez S, Espirito-Santo F (2016) Trends of daily peak wind gusts in Spain and Portugal, 1961–2014. J Geophys Res – Atmos 121(3): 1059–1078. doi:10.1002/2015JD024485
- ^ Wan, H., L. W. Xiaolan, and V. R. Swail, 2010: Homogenization and trend analysis of Canadian near-surface wind speeds. J. Climate, 23, 1209–1225, doi:10.1175/2009JCLI3200.1.
- ^ Azorin-Molina C, Vicente-Serrano SM, McVicar TR, Revuelto J, Jerez S, Lopez-Moreno JI (2017) Assessing the impact of measuring time interval when calculating wind speed means and trends under the stilling phenomenon. Int J Climatol 37(1): 480–492. doi:10.1002/joc.4720
- ^ Xu M, Chang CP, Fu C, Qi Y, Robock A, Robinson D, Zhang H (2006) Steady decline of East Asian monsoon winds, 1969–2000: evidence from direct ground measurements of wind speed. J Geophys Res-Atmos 111: D24111. doi:10.1029/2006JD007337
- ^ Otero C, Manchado C, Arias R, Bruschi VM, Gómez-Jáuregui V, Cendrero A (2012), Wind energy development in Cantabria, Spain. Methodological approach, environmental, technological and social issues, Renewable Energy, 40(1), 137–149, doi:10.1016/j.renene.2011.09.008
- ^ McVicar TR, Roderick ML, Donohue RJ, Van Niel TG (2012), Less bluster ahead? Ecohydrological implications of global trends of terrestrial near-surface wind speeds, Ecohydrol., 5(4), 381–388, doi:10.1002/eco.1298
- ^ Thompson, S.E., and G.G. Katul (2013), Implications of nonrandom seed abscission and global stilling for migration of wind-dispersed plant species, Glob. Chang. Biol., 19(6):1720–35, doi:10.1111/gcb.12173.
- ^ Kim J, Paik K (2015) Recent recovery of surface wind speed after decadal decrease: a focus on South Korea. Clim Dyn 45(5): 1699–1712. doi:10.1007/s00382-015-2546-9
- ^ Cid A., M. Menendez, S. Castanedo, A.J. Abascal, F.J. Méndez, and R. Medina (2016), Long-term changes in the frequency, intensity and duration of extreme storm surge events in southern Europe, Clim. Dyn., 46(5), 1503–1516, doi:10.1007/s00382-015-2659-1
- ^ Cuevas, E., Y. Gonzalez, S. Rodriguez, J.C. Guerra, A.J. Gomez-Pelaez, S. Alonso-Perez, J. Bustos, and C. Milford (2013), Assessment of atmospheric processes driving ozone variations in the subtropical North Atlantic free troposphere, Atmos. Chem. Phys., 13(4), 1973–1998, doi:10.5194/acp-13-1973-2013.
- ^ Viviroli D, Archer DR, Buytaert W, Fowler HJ, Greenwood GB, Hamlet AF, Huang Y, Koboltschnig G, Litaor MI, Lopez-Moreno JI, Lorentz S, Schadler B, Schreier H, Schwaiger K, Vuille M, Woods R. 2011. Climate change and mountain water resources: overview and recommendations for research, management and policy. Hydrology and Earth System Sciences 15(2): 471–504. doi:10.5194/hess-15-471-2011.
- ^ Viviroli D, Durr HH, Messerli B, Meybeck M, Weingartner R. 2007. Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resources Research 43(7):W07447. doi:10.1029/2006WR005653.
- ^ McVicar TR, Van Niel TG, Roderick ML, Li LT, Mo XG, Zimmermann NE, Schmatz DR (2010). Observational evidence from two mountainous regions that near-surface wind speeds are declining more rapidly at higher elevations than lower elevations: 1960–2006. Geophys Res Lett 37 (6): L06402. doi:10.1029/2009GL042255
- ^ You, Q., Fraedrich, K., Min, J., Kang, S., Zhu, X., Pepin, N., Zhang, L. (2014) Observed surface wind speed in the Tibetan Plateau since 1980 and its physical causes. International Journal of Climatology 34(6), 1873–1882. doi:10.1002/joc.3807