跳转到内容

全球地表静化

维基百科,自由的百科全书

全球地表静化 (英文:Global terrestrial stilling) ,指 1980 年到 2010 年期间,在地球的地表附近观测到的风速下降。[1][2]近地面风速下降主要影响南北半球的中纬度地区。全球平均风速以 -0.140 m/s•dec−1 的速度递减 (即每10年下降0.1米每秒的风速),过去五十年间下降幅度达5%至15%。[3]高纬度地区 (纬度> 75°) 则呈现风速上升趋势。 与陆地表面观测到的风力减弱相反,海洋区域的风力呈现增强趋势。[4][5] 然而,自 2010 年前后开始,风速的下降趋势在部分区域出现了逆转。[2][6][7]

地表静化的真正原因尚无定论,其主要的因素有两个:

  1. 大气环流在较大尺度上的变化。
  2. 因为森林生长、 土地利用变化及城市化等因素导致的地表粗糙度增加。

由于气候变化,地表静化目前已成为社会关注的潜在问题,因为它不仅会影响到风力发电农业水文生态环境,还与灾害空气质量人类健康等众多领域密切相关。

原因

[编辑]

地表静化的原因尚无定论。它可能是由于多种因素同时相互作用,且这些因素可能随空间和时间而变化。

科学家指出,影响风速减缓的主要原因包括:

  1. 地表粗糙度增加(如森林生长、土地利用变化和城市化)。在气象站附近,类似风速计的测量仪器会增强空气流动时遇到的摩擦力,从而导致低层风速进一步减弱。 [8] [9] [10]
  2. 大气环流在较大尺度上的变化。例如哈德利环流向极地扩张[11] ,以及主导近地面风速变化的反气旋气旋的漂移。 [12] [13] [14]
  3. 风速测量方法的变化。比如风速计设备的老化和误差、风速计的技术改进、风速计高度的变化 [15]、测量地点的转移、监测站周围环境的变化、仪器校准时的问题、以及测量时间间隔。 [16]
  4. 全球暗化”,由于气溶胶温室气体浓度增加,使得到达地球表面的太阳辐射量减少,大气趋于稳定,导致风力减弱,地表静化。 [17]

影响

[编辑]

地表静化现象的影响具有重要的科学、社会经济及环境意义,涉及大气与海洋动力学及诸多相关领域,包括:

  1. 可再生风能[18]
  2. 农业水文[19]
  3. 风媒植物物种的迁移 [20]
  4. 与风有关的自然灾害 [21]
  5. 风暴潮,海浪对海洋和沿海地区的影响 [22]
  6. 空气污染物的扩散 [23]

然而,就风能而言,近地表风速观测主要集中在离地 10 米范围内,而风力涡轮机通常位于地表以上 60 至 80 米处,因此该领域仍需更多研究。还需在高海拔地区开展更多研究,这些地区通常被称为"水塔",是世界淡水供应的主要来源地。 [24] [25]研究表明,高海拔地区的风速下降速度比低海拔地区记录的变化更为显著 [26]而且,已有几篇中国论文证明了青藏高原的这一情况。 [27]

参见

[编辑]
  1. ^ Roderick ML, Rotstayn LD, Farquhar GD, Hobbins MT (2007) On the attribution of changing pan evaporation. Geophys Res Lett 34(17): L17403. doi:10.1029/2007GL031166
  2. ^ 2.0 2.1 Zeng, Zhenzhong; Ziegler, Alan D.; Searchinger, Timothy; Yang, Long; Chen, Anping; Ju, Kunlu; Piao, Shilong; Li, Laurent Z. X.; Ciais, Philippe; Chen, Deliang; Liu, Junguo; Azorin-Molina, Cesar; Chappell, Adrian; Medvigy, David; Wood, Eric F. A reversal in global terrestrial stilling and its implications for wind energy production. Nature Climate Change. 2019, 9 (12): 979–985. Bibcode:2019NatCC...9..979Z. ISSN 1758-678X. doi:10.1038/s41558-019-0622-6. hdl:10261/207992可免费查阅 (英语). 
  3. ^ McVicar TR, Roderick ML, Donohue RJ, Li LT, Van Niel TG, Thomas A, Grieser J, Jhajharia D, Himri Y, Mahowald NM, Mescherskaya AV, Kruger AC, Rehman S, Dinpashoh Y (2012) Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J Hydrol 416–417: 182–205. doi:10.1016/j.jhydrol.2011.10.024
  4. ^ Wentz FJ, Ricciardulli L, Hilburn K, Mears C (2007) How much more rain will global warming bring? Science 317(5835): 233–235. doi:10.1126/science.1140746
  5. ^ Young IR, Zieger S, Babanin AV (2011) Global trends in wind speed and wave height. Science 332(6028): 451–455. doi:10.1126/science.1197219.
  6. ^ Wohland, Jan; Folini, Doris; Pickering, Bryn. Wind speed stilling and its recovery due to internal climate variability. Earth System Dynamics. 2021-11-24, 12 (4): 1239–1251. Bibcode:2021ESD....12.1239W. ISSN 2190-4979. doi:10.5194/esd-12-1239-2021可免费查阅. hdl:20.500.11850/517538可免费查阅 (English). 
  7. ^ 杨庆; 李明星; 祖子清; 马柱国. 中国区域的地表风速还在减弱吗?. 中国科学: 地球科学. 2021-06-07, 51 (7) [2025-06-01]. ISSN 1674-7240. doi:10.1360/SSTe-2020-0228 (中文(中国大陆)). 
  8. ^ Vautard R, Cattiaux J, Yiou P, Thépaut JN, Ciais P (2010) Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat Geosci 3(11): 756–761. doi:10.1038/ngeo979
  9. ^ Bichet A, Wild M, Folini D, Schär C (2012) Causes for decadal variations of wind speed over land: Sensitivity studies with a global climate model. Geophys Res Lett 39(11): L11701. doi:10.1029/2012GL051685
  10. ^ Wever N (2012) Quantifying trends in surface roughness and the effect on surface wind speed observations. J Geophys Res – Atmos 117(D11): D11104. doi:10.1029/2011JD017118.
  11. ^ Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, doi:10.1029/2006GL028443.
  12. ^ Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warning. Geophys Res Lett 34(6): L06805. doi:10.1029/2006GL028443.
  13. ^ Azorin-Molina C, Vicente-Serrano SM, McVicar TR, Jerez S, Sanchez-Lorenzo A, López-Moreno JI, Revuelto J, Trigo RM, Lopez-Bustins JA, Espirito-Santo F (2014) Homogenization and assessment of observed near-surface wind speed trends over Spain and Portugal, 1961–2011. J Climate 27 (10): 3692–3712. doi:10.1175/JCLI-D-13-00652.1
  14. ^ Azorin-Molina C, Guijarro JA, McVicar TR, Vicente-Serrano SM, Chen D, Jerez S, Espirito-Santo F (2016) Trends of daily peak wind gusts in Spain and Portugal, 1961–2014. J Geophys Res – Atmos 121(3): 1059–1078. doi:10.1002/2015JD024485
  15. ^ Wan, H., L. W. Xiaolan, and V. R. Swail, 2010: Homogenization and trend analysis of Canadian near-surface wind speeds. J. Climate, 23, 1209–1225, doi:10.1175/2009JCLI3200.1.
  16. ^ Azorin-Molina C, Vicente-Serrano SM, McVicar TR, Revuelto J, Jerez S, Lopez-Moreno JI (2017) Assessing the impact of measuring time interval when calculating wind speed means and trends under the stilling phenomenon. Int J Climatol 37(1): 480–492. doi:10.1002/joc.4720
  17. ^ Xu M, Chang CP, Fu C, Qi Y, Robock A, Robinson D, Zhang H (2006) Steady decline of East Asian monsoon winds, 1969–2000: evidence from direct ground measurements of wind speed. J Geophys Res-Atmos 111: D24111. doi:10.1029/2006JD007337
  18. ^ Otero C, Manchado C, Arias R, Bruschi VM, Gómez-Jáuregui V, Cendrero A (2012), Wind energy development in Cantabria, Spain. Methodological approach, environmental, technological and social issues, Renewable Energy, 40(1), 137–149, doi:10.1016/j.renene.2011.09.008
  19. ^ McVicar TR, Roderick ML, Donohue RJ, Van Niel TG (2012), Less bluster ahead? Ecohydrological implications of global trends of terrestrial near-surface wind speeds, Ecohydrol., 5(4), 381–388, doi:10.1002/eco.1298
  20. ^ Thompson, S.E., and G.G. Katul (2013), Implications of nonrandom seed abscission and global stilling for migration of wind-dispersed plant species, Glob. Chang. Biol., 19(6):1720–35, doi:10.1111/gcb.12173.
  21. ^ Kim J, Paik K (2015) Recent recovery of surface wind speed after decadal decrease: a focus on South Korea. Clim Dyn 45(5): 1699–1712. doi:10.1007/s00382-015-2546-9
  22. ^ Cid A., M. Menendez, S. Castanedo, A.J. Abascal, F.J. Méndez, and R. Medina (2016), Long-term changes in the frequency, intensity and duration of extreme storm surge events in southern Europe, Clim. Dyn., 46(5), 1503–1516, doi:10.1007/s00382-015-2659-1
  23. ^ Cuevas, E., Y. Gonzalez, S. Rodriguez, J.C. Guerra, A.J. Gomez-Pelaez, S. Alonso-Perez, J. Bustos, and C. Milford (2013), Assessment of atmospheric processes driving ozone variations in the subtropical North Atlantic free troposphere, Atmos. Chem. Phys., 13(4), 1973–1998, doi:10.5194/acp-13-1973-2013.
  24. ^ Viviroli D, Archer DR, Buytaert W, Fowler HJ, Greenwood GB, Hamlet AF, Huang Y, Koboltschnig G, Litaor MI, Lopez-Moreno JI, Lorentz S, Schadler B, Schreier H, Schwaiger K, Vuille M, Woods R. 2011. Climate change and mountain water resources: overview and recommendations for research, management and policy. Hydrology and Earth System Sciences 15(2): 471–504. doi:10.5194/hess-15-471-2011.
  25. ^ Viviroli D, Durr HH, Messerli B, Meybeck M, Weingartner R. 2007. Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resources Research 43(7):W07447. doi:10.1029/2006WR005653.
  26. ^ McVicar TR, Van Niel TG, Roderick ML, Li LT, Mo XG, Zimmermann NE, Schmatz DR (2010). Observational evidence from two mountainous regions that near-surface wind speeds are declining more rapidly at higher elevations than lower elevations: 1960–2006. Geophys Res Lett 37 (6): L06402. doi:10.1029/2009GL042255
  27. ^ You, Q., Fraedrich, K., Min, J., Kang, S., Zhu, X., Pepin, N., Zhang, L. (2014) Observed surface wind speed in the Tibetan Plateau since 1980 and its physical causes. International Journal of Climatology 34(6), 1873–1882. doi:10.1002/joc.3807