Q導數也稱為傑克遜導數,乃是一般導數的Q模擬,由英國數學家F. H. Jackson創立。
函數f(x)的q-導數定義如下:

或書寫為
.

當as q → 1時,化為尋常的導數, → d⁄dx,
q-導數算符是一個線性算子:



若
. 則

q-導數 的本徵值是q-指數 eq(x).
![{\displaystyle \left({\frac {d}{dz}}\right)_{q}z^{n}={\frac {1-q^{n}}{1-q}}z^{n-1}=[n]_{q}z^{n-1}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/64a0fdcac5de2e43d295dde69328b13b64d51c6c)
其中
是n的 q括號
並且
.
一個函數的n階導數為:
![{\displaystyle (D_{q}^{n}f)(0)={\frac {f^{(n)}(0)}{n!}}{\frac {(q;q)_{n}}{(1-q)^{n}}}={\frac {f^{(n)}(0)}{n!}}[n]_{q}!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0ffbbfd8c17009de664036b8758cb8dcc679638a)
![{\displaystyle f(z)=\sum _{n=0}^{\infty }f^{(n)}(0)\,{\frac {z^{n}}{n!}}=\sum _{n=0}^{\infty }(D_{q}^{n}f)(0)\,{\frac {z^{n}}{[n]_{q}!}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bb3f1e9b829520538feb6987126b00f1c1cc6c53)
q derivative of sin(x)
|
q derivative of sin(x) 3D plot
|
q derivative of sin(x) 2D animation
|
q derivative of sin(x) density plot
|
q derivative of tanh(x) animation
|
q derivative of tanh(x) 3D
|
q derivative of tanh(z) complex 3D
|
q derivative of tanh(z) 2D density
|
- F. H. Jackson (1908), On q-functions and a certain difference operator, Trans. Roy. Soc. Edin., 46 253-281.
- Victor Kac, Pokman Cheung, Quantum Calculus, Universitext, Springer-Verlag, 2002. ISBN 0-387-95341-8