計算聽力學
計算聽力學是聽力學的一個分支,運用數學和計算機科學的技術來改進臨床治療方法並深化對聽覺系統的科學理解。計算聽力學與計算醫學密切相關,後者利用定量模型來開發更優的疾病診斷和治療方法[1]。
概述
[編輯]與傳統的聽力學和聽覺科學研究方法相比,計算聽力學更注重預測建模和大規模分析 ("大數據") 而非推論統計和小隊列假設檢驗。計算聽力學的目標是將聽覺科學、數據科學、信息技術和機器學習領域的進展轉化為臨床聽力學護理。了解人類以及相關動物物種的聽力功能和聽覺處理的研究代表了支持這一目標的可轉化工作。實施更有效的診斷和治療的研究和開發代表了支持這一目標的轉化工作[2]。
對於有聽力困難、耳鳴、聽覺過敏或平衡問題的人來說,這些進展可能會帶來更精確的診斷、新型療法和先進的康複選項,包括智能假肢和電子健康/移動健康應用程式。對於護理提供者來說,它可以提供可操作的知識和工具,以自動化部分臨床路徑[3]。
該領域是跨學科的,包括聽力學、聽覺神經科學、計算機科學、數據科學、機器學習、心理學、信號處理、自然語言處理和前庭學等基礎學科。
應用
[編輯]在計算聽力學中,模型和算法用於了解控制聽覺系統的原理、篩查聽力損失、診斷聽力障礙、提供康復、生成患者教育模擬等。
聽力、語音和聽覺感知的計算模型
[編輯]幾十年來,現象學和生物物理(計算)模型已經被開發用於模擬人類聽覺系統的特性。例子包括基底膜機械特性的模型,[4],電刺激耳蝸的模型,[5][6],中耳力學,[7],骨傳導,[8]和中樞聽覺通路的模型[9]。 Saremi等人(2016)比較了7種當代模型,包括並行濾波器組、級聯濾波器組、傳輸線和生物物理模型[10]。 最近,卷積神經網絡(CNNs)已經被構建和訓練,可以高精度地複製人類聽覺功能[11],或複雜的耳蝸力學[12]。 儘管受生物神經網絡互連性的啟發,CNNs的架構與自然聽覺系統的組織是不同的。
電子健康/移動健康(聯網聽力保健、無線和基於互聯網的服務)
[編輯]在線純音閾值聽力測定(或篩查)測試、電生理測量,例如畸變產物耳聲發射(DPOAEs)和噪音中的言語篩查測試,正變得越來越普及,正越來越多地成為提高認識和準確識別不同年齡段聽力損失的工具,監測耳毒性和/或噪音的影響,指導耳朵和聽力護理決策並為臨床醫生提供支持[13][14]。 已經有人提出通過基於智能手機的測試,使用聲學反射法和機器學習來檢測中耳液體[15]。 智能手機附件也被設計用於進行鼓室測量,以對中耳鼓膜進行聲學評估[16][17]。 人們還製作了連接智能手機的低成本耳機原型,以幫助檢測耳蝸發出的微弱耳聲發射並進行新生兒聽力篩查[18][19]。
聽力學和聽力保健中的大數據和人工智能
[編輯]收集大量的聽力圖 (例如NIOSH[20]或NHANES數據庫) 為研究人員提供了發現人口聽力狀況模式的機會[21][22],或訓練可以分類聽力圖的人工智能系統[23]。 機器學習可以用來預測多個因素之間的關係,例如,基於自我報告的聽力損失預測抑鬱症[24]或基因譜與自我報告的聽力損失之間的關係[25]。 助聽器和可穿戴設備提供了監測用戶聲音環境或記錄使用模式的選項,這些數據可以用於自動推薦預期能使用戶受益的設置[26]。
改進聽力設備和聽覺植入物的計算方法
[編輯]通過聽覺植入物改善康復的方法包括改善音樂感知能力, [27]電極-神經元接口模型、[28]以及基於人工智能的人工耳蝸佩戴助手[29]。
經過基於機器學習的分類處理的在線調查已被用於診斷體感性耳鳴[30]。自動化 NLP 技術(包括無監督和監督機器學習)已被用於分析有關耳鳴的社交帖子並分析症狀的異質性[31] [32]。
聽力問題的診斷,促進聽力的聲學方法
[編輯]機器學習已應用於聽力測驗,以創建靈活、高效的評估工具,不需要過多的測試時間來確定某人的聽覺狀況[33] [34]。類似地,人們已經創建了基於機器學習的其他聽覺測試版本,包括確定耳蝸中的死區或等響度曲線[35]。
信息化研究(遠程測試、在線實驗、新工具和框架)
[編輯]信息化研究工具的例子包括遠程測試Wiki,[36] 便攜式自動化快速測試(PART),生態瞬時評估(EMA)和NIOSH聲級計。許多工具可以在網上找到[37]。
軟件和工具
[編輯]軟件和大型數據集對於計算聽力學的開發和應用至關重要。與許多科學計算領域一樣,計算聽力學領域的很大一部分存在依賴於開源軟件及其持續的維護、開發和進步[38]。
相關領域
[編輯]計算生物學、計算醫學和計算病理學都是生命科學的跨學科方法,借鑑了數學和信息科學等定量學科。
另請參閱
[編輯]外部連結
[編輯]參考文獻
[編輯]- ^ Winslow, Raimond L.; Trayanova, Natalia; Geman, Donald; Miller, Michael I. Computational Medicine: Translating Models to Clinical Care. Science Translational Medicine. 31 October 2012, 4 (158): 158rv11. PMC 3618897
. PMID 23115356. doi:10.1126/scitranslmed.3003528.
- ^ Gannon, Frank. The steps from translatable to translational research. EMBO Reports. November 2014, 15 (11): 1107–1108. ISSN 1469-221X. PMC 4253482
. PMID 25296643. doi:10.15252/embr.201439587.
- ^ Wasmann, Jan-Willem A.; Lanting, Cris P.; Huinck, Wendy J.; Mylanus, Emmanuel A. M.; van der Laak, Jeroen W. M.; Govaerts, Paul J.; Swanepoel, De Wet; Moore, David R.; Barbour, Dennis L. Computational Audiology: New Approaches to Advance Hearing Health Care in the Digital Age. Ear and Hearing. November–December 2021, 42 (6): 1499–1507. PMC 8417156
. PMID 33675587. doi:10.1097/AUD.0000000000001041.
- ^ De Boer, Egbert, Dallos, Peter; Popper, Arthur N.; Fay, Richard R. , 編, Mechanics of the Cochlea: Modeling Efforts, The Cochlea, Springer Handbook of Auditory Research (New York, NY: Springer New York), 1996, 8: 258–317 [2022-01-18], ISBN 978-1-4612-6891-8, doi:10.1007/978-1-4612-0757-3_5
- ^ Frijns, J. H. M.; de Snoo, S. L.; Schoonhoven, R. Potential distributions and neural excitation patterns in a rotationally symmetric model of the electrically stimulated cochlea. Hearing Research. 1995-07-01, 87 (1): 170–186. ISSN 0378-5955. PMID 8567435. S2CID 4762235. doi:10.1016/0378-5955(95)00090-Q (英語).
- ^ Rubinstein, Jay T.; Hong, Robert. Signal Coding in Cochlear Implants: Exploiting Stochastic Effects of Electrical Stimulation. Annals of Otology, Rhinology & Laryngology. September 2003, 112 (9_suppl): 14–19. ISSN 0003-4894. PMID 14533839. S2CID 32157848. doi:10.1177/00034894031120s904.
- ^ Sun, Q.; Gan, R. Z.; Chang, K.-H.; Dormer, K. J. Computer-integrated finite element modeling of human middle ear. Biomechanics and Modeling in Mechanobiology. 2002-10-01, 1 (2): 109–122. ISSN 1617-7959. PMID 14595544. S2CID 8781577. doi:10.1007/s10237-002-0014-z (英語).
- ^ Stenfelt, Stefan. Model predictions for bone conduction perception in the human. Hearing Research. MEMRO 2015 – Basic Science meets Clinical Otology. 2016-10-01, 340: 135–143. ISSN 0378-5955. PMID 26657096. S2CID 4862153. doi:10.1016/j.heares.2015.10.014 (英語).
- ^ Meddis, Ray; Lopez-Poveda, Enrique A.; Fay, Richard R.; Popper, Arthur N. (編). Computational Models of the Auditory System. Springer Handbook of Auditory Research. 2010, 35. ISBN 978-1-4419-1370-8. ISSN 0947-2657. doi:10.1007/978-1-4419-5934-8 (英國英語).
- ^ Saremi, Amin; Beutelmann, Rainer; Dietz, Mathias; Ashida, Go; Kretzberg, Jutta; Verhulst, Sarah. A comparative study of seven human cochlear filter models. The Journal of the Acoustical Society of America. September 2016, 140 (3): 1618–1634. Bibcode:2016ASAJ..140.1618S. ISSN 0001-4966. PMID 27914400. doi:10.1121/1.4960486.
- ^ Kell, Alexander J. E.; Yamins, Daniel L. K.; Shook, Erica N.; Norman-Haignere, Sam V.; McDermott, Josh H. A Task-Optimized Neural Network Replicates Human Auditory Behavior, Predicts Brain Responses, and Reveals a Cortical Processing Hierarchy. Neuron. 2018-05-02, 98 (3): 630–644.e16. ISSN 0896-6273. PMID 29681533. S2CID 5084719. doi:10.1016/j.neuron.2018.03.044
(English).
- ^ Baby, Deepak; Van Den Broucke, Arthur; Verhulst, Sarah. A convolutional neural-network model of human cochlear mechanics and filter tuning for real-time applications. Nature Machine Intelligence. February 2021, 3 (2): 134–143. ISSN 2522-5839. PMC 7116797
. PMID 33629031. doi:10.1038/s42256-020-00286-8 (英語).
- ^ Paglialonga, Alessia; Cleveland Nielsen, Annette; Ingo, Elisabeth; Barr, Caitlin; Laplante-Lévesque, Ariane. eHealth and the hearing aid adult patient journey: a state-of-the-art review. BioMedical Engineering OnLine. 2018-07-31, 17 (1): 101. ISSN 1475-925X. PMC 6069792
. PMID 30064497. doi:10.1186/s12938-018-0531-3
.
- ^ Frisby, Caitlin; Eikelboom, Robert; Mahomed-Asmail, Faheema; Kuper, Hannah; Swanepoel, De Wet. MHealth Applications for Hearing Loss: A Scoping Review. Telemedicine and e-Health. 2021-12-30, 28 (8): 1090–1099. ISSN 1530-5627. PMID 34967683. S2CID 245567480. doi:10.1089/tmj.2021.0460. hdl:2263/84486
.
- ^ Chan, Justin; Raju, Sharat; Nandakumar, Rajalakshmi; Bly, Randall; Gollakota, Shyamnath. Detecting middle ear fluid using smartphones. Science Translational Medicine. 2019-05-15, 11 (492): eaav1102. ISSN 1946-6234. PMID 31092691. S2CID 155102882. doi:10.1126/scitranslmed.aav1102
(英語).
- ^ Chan, Justin; Najafi, Ali; Baker, Mallory; Kinsman, Julie; Mancl, Lisa R.; Norton, Susan; Bly, Randall; Gollakota, Shyamnath. Performing tympanometry using smartphones. Communications Medicine. 2022-06-16, 2 (1): 57. ISSN 2730-664X. PMC 9203539
. PMID 35721828. S2CID 249811632. doi:10.1038/s43856-022-00120-9 (英語).
- ^ Community, Nature Portfolio Bioengineering. Computing for Audiology: Smartphone tympanometer for diagnosing middle ear disorders. Nature Portfolio Bioengineering Community. 2022-06-15 [2022-06-21] (英語).
- ^ Goodman, Shawn S. Affordable hearing screening. Nature Biomedical Engineering. 2022-10-31, 6 (11): 1199–1200. ISSN 2157-846X. PMID 36316370. S2CID 253246312. doi:10.1038/s41551-022-00959-2 (英語).
- ^ Chan, Justin; Ali, Nada; Najafi, Ali; Meehan, Anna; Mancl, Lisa R.; Gallagher, Emily; Bly, Randall; Gollakota, Shyamnath. An off-the-shelf otoacoustic-emission probe for hearing screening via a smartphone. Nature Biomedical Engineering. 2022-10-31, 6 (11): 1203–1213. ISSN 2157-846X. PMC 9717525
. PMID 36316369. doi:10.1038/s41551-022-00947-6 (英語).
- ^ Masterson, Elizabeth A.; Tak, SangWoo; Themann, Christa L.; Wall, David K.; Groenewold, Matthew R.; Deddens, James A.; Calvert, Geoffrey M. Prevalence of hearing loss in the United States by industry. American Journal of Industrial Medicine. June 2013, 56 (6): 670–681. PMID 22767358. doi:10.1002/ajim.22082 (英語).
- ^ Charih, François; Bromwich, Matthew; Mark, Amy E.; Lefrançois, Renée; Green, James R. Data-Driven Audiogram Classification for Mobile Audiometry. Scientific Reports. December 2020, 10 (1): 3962. Bibcode:2020NatSR..10.3962C. ISSN 2045-2322. PMC 7054524
. PMID 32127604. doi:10.1038/s41598-020-60898-3 (英語).
- ^ Cox, Marco; de Vries, Bert. Bayesian Pure-Tone Audiometry Through Active Learning Under Informed Priors. Frontiers in Digital Health. 2021, 3: 723348. ISSN 2673-253X. PMC 8521968
. PMID 34713188. doi:10.3389/fdgth.2021.723348
.
- ^ Crowson, Matthew G.; Lee, Jong Wook; Hamour, Amr; Mahmood, Rafid; Babier, Aaron; Lin, Vincent; Tucci, Debara L.; Chan, Timothy C. Y. AutoAudio: Deep Learning for Automatic Audiogram Interpretation. Journal of Medical Systems. 2020-08-07, 44 (9): 163. ISSN 1573-689X. PMID 32770269. S2CID 221035573. doi:10.1007/s10916-020-01627-1 (英語).
- ^ Crowson, Matthew G.; Franck, Kevin H.; Rosella, Laura C.; Chan, Timothy C. Y. Predicting Depression From Hearing Loss Using Machine Learning. Ear and Hearing. July–August 2021, 42 (4): 982–989. ISSN 1538-4667. PMID 33577219. S2CID 231901726. doi:10.1097/AUD.0000000000000993 (美國英語).
- ^ Wells, Helena Rr.; Freidin, Maxim B.; Zainul Abidin, Fatin N.; Payton, Antony; Dawes, Piers; Munro, Kevin J.; Morton, Cynthia C.; Moore, David R.; Dawson, Sally J, Genome-wide association study identifies 44 independent genomic loci for self-reported adult hearing difficulty in the UK Biobank cohort, 2019-02-14 [2022-01-20], doi:10.1101/549071
- ^ Christensen, Jeppe H.; Saunders, Gabrielle H.; Porsbo, Michael; Pontoppidan, Niels H. The everyday acoustic environment and its association with human heart rate: evidence from real-world data logging with hearing aids and wearables. Royal Society Open Science. 2021, 8 (2): 201345. Bibcode:2021RSOS....801345C. PMC 8074664
. PMID 33972852. doi:10.1098/rsos.201345.
- ^ Tahmasebi, Sina; Gajȩcki, Tom; Nogueira, Waldo. Design and Evaluation of a Real-Time Audio Source Separation Algorithm to Remix Music for Cochlear Implant Users. Frontiers in Neuroscience. 2020, 14: 434. ISSN 1662-453X. PMC 7248365
. PMID 32508564. doi:10.3389/fnins.2020.00434
.
- ^ Garcia, Charlotte; Goehring, Tobias; Cosentino, Stefano; Turner, Richard E.; Deeks, John M.; Brochier, Tim; Rughooputh, Taren; Bance, Manohar; Carlyon, Robert P. The Panoramic ECAP Method: Estimating Patient-Specific Patterns of Current Spread and Neural Health in Cochlear Implant Users. Journal of the Association for Research in Otolaryngology. 2021-10-01, 22 (5): 567–589. ISSN 1438-7573. PMC 8476702
. PMID 33891218. doi:10.1007/s10162-021-00795-2 (英語).
- ^ Battmer, Rolf-Dieter; Borel, Stephanie; Brendel, Martina; Buchner, Andreas; Cooper, Huw; Fielden, Claire; Gazibegovic, Dzemal; Goetze, Romy; Govaerts, Paul; Kelleher, Katherine; Lenartz, Thomas. Assessment of 'Fitting to Outcomes Expert' FOX™ with new cochlear implant users in a multi-centre study. Cochlear Implants International. 2015-03-01, 16 (2): 100–109. ISSN 1467-0100. PMID 25118042. S2CID 4674778. doi:10.1179/1754762814Y.0000000093.
- ^ Michiels, Sarah; Cardon, Emilie; Gilles, Annick; Goedhart, Hazel; Vesala, Markku; Schlee, Winfried. Somatosensory Tinnitus Diagnosis: Diagnostic Value of Existing Criteria. Ear & Hearing. 2021-07-14, 43 (1): 143–149. ISSN 1538-4667. PMID 34261856. S2CID 235907109. doi:10.1097/aud.0000000000001105. hdl:1942/34681
.
- ^ Palacios, Guillaume; Noreña, Arnaud; Londero, Alain. Assessing the Heterogeneity of Complaints Related to Tinnitus and Hyperacusis from an Unsupervised Machine Learning Approach: An Exploratory Study. Audiology and Neurotology. 2020, 25 (4): 174–189. ISSN 1420-3030. PMID 32062654. S2CID 211135952. doi:10.1159/000504741
.
- ^ What can we learn about tinnitus from social media posts?. Computational Audiology. 2021-06-07 [2022-01-20] (美國英語).
- ^ Barbour, Dennis L.; Howard, Rebecca T.; Song, Xinyu D.; Metzger, Nikki; Sukesan, Kiron A.; DiLorenzo, James C.; Snyder, Braham R. D.; Chen, Jeff Y.; Degen, Eleanor A.; Buchbinder, Jenna M.; Heisey, Katherine L. Online Machine Learning Audiometry. Ear & Hearing. July 2019, 40 (4): 918–926. ISSN 0196-0202. PMC 6476703
. PMID 30358656. doi:10.1097/AUD.0000000000000669 (英語).
- ^ Schlittenlacher, Josef; Turner, Richard E.; Moore, Brian C. J. Audiogram estimation using Bayesian active learning. The Journal of the Acoustical Society of America. 2018-07-01, 144 (1): 421–430. Bibcode:2018ASAJ..144..421S. ISSN 0001-4966. PMID 30075695. S2CID 51910371. doi:10.1121/1.5047436.
- ^ Schlittenlacher, Josef; Moore, Brian C. J. Fast estimation of equal-loudness contours using Bayesian active learning and direct scaling. Acoustical Science and Technology. 2020, 41 (1): 358–360. S2CID 214270892. doi:10.1250/ast.41.358
.
- ^ PP Remote Testing Wiki | Main / RemoteTesting. www.spatialhearing.org. [2022-01-20].
- ^ Resources. Computational Audiology. [2022-01-20] (美國英語).
- ^ Fortunato, Laura; Galassi, Mark. The case for free and open source software in research and scholarship. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2021-05-17, 379 (2197): 20200079. Bibcode:2021RSPTA.37900079F. PMID 33775148. S2CID 232387092. doi:10.1098/rsta.2020.0079.