计算听力学
计算听力学是听力学的一个分支,运用数学和计算机科学的技术来改进临床治疗方法并深化对听觉系统的科学理解。计算听力学与计算医学密切相关,后者利用定量模型来开发更优的疾病诊断和治疗方法[1]。
概述
[编辑]与传统的听力学和听觉科学研究方法相比,计算听力学更注重预测建模和大规模分析 ("大数据") 而非推论统计和小队列假设检验。计算听力学的目标是将听觉科学、数据科学、信息技术和机器学习领域的进展转化为临床听力学护理。了解人类以及相关动物物种的听力功能和听觉处理的研究代表了支持这一目标的可转化工作。实施更有效的诊断和治疗的研究和开发代表了支持这一目标的转化工作[2]。
对于有听力困难、耳鸣、听觉过敏或平衡问题的人来说,这些进展可能会带来更精确的诊断、新型疗法和先进的康复选项,包括智能假肢和电子健康/移动健康应用程序。对于护理提供者来说,它可以提供可操作的知识和工具,以自动化部分临床路径[3]。
该领域是跨学科的,包括听力学、听觉神经科学、计算机科学、数据科学、机器学习、心理学、信号处理、自然语言处理和前庭学等基础学科。
应用
[编辑]在计算听力学中,模型和算法用于了解控制听觉系统的原理、筛查听力损失、诊断听力障碍、提供康复、生成患者教育模拟等。
听力、语音和听觉感知的计算模型
[编辑]几十年来,现象学和生物物理(计算)模型已经被开发用于模拟人类听觉系统的特性。例子包括基底膜机械特性的模型,[4],电刺激耳蜗的模型,[5][6],中耳力学,[7],骨传导,[8]和中枢听觉通路的模型[9]。 Saremi等人(2016)比较了7种当代模型,包括并行滤波器组、级联滤波器组、传输线和生物物理模型[10]。 最近,卷积神经网络(CNNs)已经被构建和训练,可以高精度地复制人类听觉功能[11],或复杂的耳蜗力学[12]。 尽管受生物神经网络互连性的启发,CNNs的架构与自然听觉系统的组织是不同的。
电子健康/移动健康(联网听力保健、无线和基于互联网的服务)
[编辑]在线纯音阈值听力测定(或筛查)测试、电生理测量,例如畸变产物耳声发射(DPOAEs)和噪音中的言语筛查测试,正变得越来越普及,正越来越多地成为提高认识和准确识别不同年龄段听力损失的工具,监测耳毒性和/或噪音的影响,指导耳朵和听力护理决策并为临床医生提供支持[13][14]。 已经有人提出通过基于智能手机的测试,使用声学反射法和机器学习来检测中耳液体[15]。 智能手机附件也被设计用于进行鼓室测量,以对中耳鼓膜进行声学评估[16][17]。 人们还制作了连接智能手机的低成本耳机原型,以帮助检测耳蜗发出的微弱耳声发射并进行新生儿听力筛查[18][19]。
听力学和听力保健中的大数据和人工智能
[编辑]收集大量的听力图 (例如NIOSH[20]或NHANES数据库) 为研究人员提供了发现人口听力状况模式的机会[21][22],或训练可以分类听力图的人工智能系统[23]。 机器学习可以用来预测多个因素之间的关系,例如,基于自我报告的听力损失预测抑郁症[24]或基因谱与自我报告的听力损失之间的关系[25]。 助听器和可穿戴设备提供了监测用户声音环境或记录使用模式的选项,这些数据可以用于自动推荐预期能使用户受益的设置[26]。
改进听力设备和听觉植入物的计算方法
[编辑]通过听觉植入物改善康复的方法包括改善音乐感知能力, [27]电极-神经元接口模型、[28]以及基于人工智能的人工耳蜗佩戴助手[29]。
经过基于机器学习的分类处理的在线调查已被用于诊断体感性耳鸣[30]。自动化 NLP 技术(包括无监督和监督机器学习)已被用于分析有关耳鸣的社交帖子并分析症状的异质性[31] [32]。
听力问题的诊断,促进听力的声学方法
[编辑]机器学习已应用于听力测验,以创建灵活、高效的评估工具,不需要过多的测试时间来确定某人的听觉状况[33] [34]。类似地,人们已经创建了基于机器学习的其他听觉测试版本,包括确定耳蜗中的死区或等响度曲线[35]。
信息化研究(远程测试、在线实验、新工具和框架)
[编辑]信息化研究工具的例子包括远程测试Wiki,[36] 便携式自动化快速测试(PART),生态瞬时评估(EMA)和NIOSH声级计。许多工具可以在网上找到[37]。
软件和工具
[编辑]软件和大型数据集对于计算听力学的开发和应用至关重要。与许多科学计算领域一样,计算听力学领域的很大一部分存在依赖于开源软件及其持续的维护、开发和进步[38]。
相关领域
[编辑]计算生物学、计算医学和计算病理学都是生命科学的跨学科方法,借鉴了数学和信息科学等定量学科。
另请参阅
[编辑]外部链接
[编辑]参考文献
[编辑]- ^ Winslow, Raimond L.; Trayanova, Natalia; Geman, Donald; Miller, Michael I. Computational Medicine: Translating Models to Clinical Care. Science Translational Medicine. 31 October 2012, 4 (158): 158rv11. PMC 3618897
. PMID 23115356. doi:10.1126/scitranslmed.3003528.
- ^ Gannon, Frank. The steps from translatable to translational research. EMBO Reports. November 2014, 15 (11): 1107–1108. ISSN 1469-221X. PMC 4253482
. PMID 25296643. doi:10.15252/embr.201439587.
- ^ Wasmann, Jan-Willem A.; Lanting, Cris P.; Huinck, Wendy J.; Mylanus, Emmanuel A. M.; van der Laak, Jeroen W. M.; Govaerts, Paul J.; Swanepoel, De Wet; Moore, David R.; Barbour, Dennis L. Computational Audiology: New Approaches to Advance Hearing Health Care in the Digital Age. Ear and Hearing. November–December 2021, 42 (6): 1499–1507. PMC 8417156
. PMID 33675587. doi:10.1097/AUD.0000000000001041.
- ^ De Boer, Egbert, Dallos, Peter; Popper, Arthur N.; Fay, Richard R. , 编, Mechanics of the Cochlea: Modeling Efforts, The Cochlea, Springer Handbook of Auditory Research (New York, NY: Springer New York), 1996, 8: 258–317 [2022-01-18], ISBN 978-1-4612-6891-8, doi:10.1007/978-1-4612-0757-3_5
- ^ Frijns, J. H. M.; de Snoo, S. L.; Schoonhoven, R. Potential distributions and neural excitation patterns in a rotationally symmetric model of the electrically stimulated cochlea. Hearing Research. 1995-07-01, 87 (1): 170–186. ISSN 0378-5955. PMID 8567435. S2CID 4762235. doi:10.1016/0378-5955(95)00090-Q (英语).
- ^ Rubinstein, Jay T.; Hong, Robert. Signal Coding in Cochlear Implants: Exploiting Stochastic Effects of Electrical Stimulation. Annals of Otology, Rhinology & Laryngology. September 2003, 112 (9_suppl): 14–19. ISSN 0003-4894. PMID 14533839. S2CID 32157848. doi:10.1177/00034894031120s904.
- ^ Sun, Q.; Gan, R. Z.; Chang, K.-H.; Dormer, K. J. Computer-integrated finite element modeling of human middle ear. Biomechanics and Modeling in Mechanobiology. 2002-10-01, 1 (2): 109–122. ISSN 1617-7959. PMID 14595544. S2CID 8781577. doi:10.1007/s10237-002-0014-z (英语).
- ^ Stenfelt, Stefan. Model predictions for bone conduction perception in the human. Hearing Research. MEMRO 2015 – Basic Science meets Clinical Otology. 2016-10-01, 340: 135–143. ISSN 0378-5955. PMID 26657096. S2CID 4862153. doi:10.1016/j.heares.2015.10.014 (英语).
- ^ Meddis, Ray; Lopez-Poveda, Enrique A.; Fay, Richard R.; Popper, Arthur N. (编). Computational Models of the Auditory System. Springer Handbook of Auditory Research. 2010, 35. ISBN 978-1-4419-1370-8. ISSN 0947-2657. doi:10.1007/978-1-4419-5934-8 (英国英语).
- ^ Saremi, Amin; Beutelmann, Rainer; Dietz, Mathias; Ashida, Go; Kretzberg, Jutta; Verhulst, Sarah. A comparative study of seven human cochlear filter models. The Journal of the Acoustical Society of America. September 2016, 140 (3): 1618–1634. Bibcode:2016ASAJ..140.1618S. ISSN 0001-4966. PMID 27914400. doi:10.1121/1.4960486.
- ^ Kell, Alexander J. E.; Yamins, Daniel L. K.; Shook, Erica N.; Norman-Haignere, Sam V.; McDermott, Josh H. A Task-Optimized Neural Network Replicates Human Auditory Behavior, Predicts Brain Responses, and Reveals a Cortical Processing Hierarchy. Neuron. 2018-05-02, 98 (3): 630–644.e16. ISSN 0896-6273. PMID 29681533. S2CID 5084719. doi:10.1016/j.neuron.2018.03.044
(English).
- ^ Baby, Deepak; Van Den Broucke, Arthur; Verhulst, Sarah. A convolutional neural-network model of human cochlear mechanics and filter tuning for real-time applications. Nature Machine Intelligence. February 2021, 3 (2): 134–143. ISSN 2522-5839. PMC 7116797
. PMID 33629031. doi:10.1038/s42256-020-00286-8 (英语).
- ^ Paglialonga, Alessia; Cleveland Nielsen, Annette; Ingo, Elisabeth; Barr, Caitlin; Laplante-Lévesque, Ariane. eHealth and the hearing aid adult patient journey: a state-of-the-art review. BioMedical Engineering OnLine. 2018-07-31, 17 (1): 101. ISSN 1475-925X. PMC 6069792
. PMID 30064497. doi:10.1186/s12938-018-0531-3
.
- ^ Frisby, Caitlin; Eikelboom, Robert; Mahomed-Asmail, Faheema; Kuper, Hannah; Swanepoel, De Wet. MHealth Applications for Hearing Loss: A Scoping Review. Telemedicine and e-Health. 2021-12-30, 28 (8): 1090–1099. ISSN 1530-5627. PMID 34967683. S2CID 245567480. doi:10.1089/tmj.2021.0460. hdl:2263/84486
.
- ^ Chan, Justin; Raju, Sharat; Nandakumar, Rajalakshmi; Bly, Randall; Gollakota, Shyamnath. Detecting middle ear fluid using smartphones. Science Translational Medicine. 2019-05-15, 11 (492): eaav1102. ISSN 1946-6234. PMID 31092691. S2CID 155102882. doi:10.1126/scitranslmed.aav1102
(英语).
- ^ Chan, Justin; Najafi, Ali; Baker, Mallory; Kinsman, Julie; Mancl, Lisa R.; Norton, Susan; Bly, Randall; Gollakota, Shyamnath. Performing tympanometry using smartphones. Communications Medicine. 2022-06-16, 2 (1): 57. ISSN 2730-664X. PMC 9203539
. PMID 35721828. S2CID 249811632. doi:10.1038/s43856-022-00120-9 (英语).
- ^ Community, Nature Portfolio Bioengineering. Computing for Audiology: Smartphone tympanometer for diagnosing middle ear disorders. Nature Portfolio Bioengineering Community. 2022-06-15 [2022-06-21] (英语).
- ^ Goodman, Shawn S. Affordable hearing screening. Nature Biomedical Engineering. 2022-10-31, 6 (11): 1199–1200. ISSN 2157-846X. PMID 36316370. S2CID 253246312. doi:10.1038/s41551-022-00959-2 (英语).
- ^ Chan, Justin; Ali, Nada; Najafi, Ali; Meehan, Anna; Mancl, Lisa R.; Gallagher, Emily; Bly, Randall; Gollakota, Shyamnath. An off-the-shelf otoacoustic-emission probe for hearing screening via a smartphone. Nature Biomedical Engineering. 2022-10-31, 6 (11): 1203–1213. ISSN 2157-846X. PMC 9717525
. PMID 36316369. doi:10.1038/s41551-022-00947-6 (英语).
- ^ Masterson, Elizabeth A.; Tak, SangWoo; Themann, Christa L.; Wall, David K.; Groenewold, Matthew R.; Deddens, James A.; Calvert, Geoffrey M. Prevalence of hearing loss in the United States by industry. American Journal of Industrial Medicine. June 2013, 56 (6): 670–681. PMID 22767358. doi:10.1002/ajim.22082 (英语).
- ^ Charih, François; Bromwich, Matthew; Mark, Amy E.; Lefrançois, Renée; Green, James R. Data-Driven Audiogram Classification for Mobile Audiometry. Scientific Reports. December 2020, 10 (1): 3962. Bibcode:2020NatSR..10.3962C. ISSN 2045-2322. PMC 7054524
. PMID 32127604. doi:10.1038/s41598-020-60898-3 (英语).
- ^ Cox, Marco; de Vries, Bert. Bayesian Pure-Tone Audiometry Through Active Learning Under Informed Priors. Frontiers in Digital Health. 2021, 3: 723348. ISSN 2673-253X. PMC 8521968
. PMID 34713188. doi:10.3389/fdgth.2021.723348
.
- ^ Crowson, Matthew G.; Lee, Jong Wook; Hamour, Amr; Mahmood, Rafid; Babier, Aaron; Lin, Vincent; Tucci, Debara L.; Chan, Timothy C. Y. AutoAudio: Deep Learning for Automatic Audiogram Interpretation. Journal of Medical Systems. 2020-08-07, 44 (9): 163. ISSN 1573-689X. PMID 32770269. S2CID 221035573. doi:10.1007/s10916-020-01627-1 (英语).
- ^ Crowson, Matthew G.; Franck, Kevin H.; Rosella, Laura C.; Chan, Timothy C. Y. Predicting Depression From Hearing Loss Using Machine Learning. Ear and Hearing. July–August 2021, 42 (4): 982–989. ISSN 1538-4667. PMID 33577219. S2CID 231901726. doi:10.1097/AUD.0000000000000993 (美国英语).
- ^ Wells, Helena Rr.; Freidin, Maxim B.; Zainul Abidin, Fatin N.; Payton, Antony; Dawes, Piers; Munro, Kevin J.; Morton, Cynthia C.; Moore, David R.; Dawson, Sally J, Genome-wide association study identifies 44 independent genomic loci for self-reported adult hearing difficulty in the UK Biobank cohort, 2019-02-14 [2022-01-20], doi:10.1101/549071
- ^ Christensen, Jeppe H.; Saunders, Gabrielle H.; Porsbo, Michael; Pontoppidan, Niels H. The everyday acoustic environment and its association with human heart rate: evidence from real-world data logging with hearing aids and wearables. Royal Society Open Science. 2021, 8 (2): 201345. Bibcode:2021RSOS....801345C. PMC 8074664
. PMID 33972852. doi:10.1098/rsos.201345.
- ^ Tahmasebi, Sina; Gajȩcki, Tom; Nogueira, Waldo. Design and Evaluation of a Real-Time Audio Source Separation Algorithm to Remix Music for Cochlear Implant Users. Frontiers in Neuroscience. 2020, 14: 434. ISSN 1662-453X. PMC 7248365
. PMID 32508564. doi:10.3389/fnins.2020.00434
.
- ^ Garcia, Charlotte; Goehring, Tobias; Cosentino, Stefano; Turner, Richard E.; Deeks, John M.; Brochier, Tim; Rughooputh, Taren; Bance, Manohar; Carlyon, Robert P. The Panoramic ECAP Method: Estimating Patient-Specific Patterns of Current Spread and Neural Health in Cochlear Implant Users. Journal of the Association for Research in Otolaryngology. 2021-10-01, 22 (5): 567–589. ISSN 1438-7573. PMC 8476702
. PMID 33891218. doi:10.1007/s10162-021-00795-2 (英语).
- ^ Battmer, Rolf-Dieter; Borel, Stephanie; Brendel, Martina; Buchner, Andreas; Cooper, Huw; Fielden, Claire; Gazibegovic, Dzemal; Goetze, Romy; Govaerts, Paul; Kelleher, Katherine; Lenartz, Thomas. Assessment of 'Fitting to Outcomes Expert' FOX™ with new cochlear implant users in a multi-centre study. Cochlear Implants International. 2015-03-01, 16 (2): 100–109. ISSN 1467-0100. PMID 25118042. S2CID 4674778. doi:10.1179/1754762814Y.0000000093.
- ^ Michiels, Sarah; Cardon, Emilie; Gilles, Annick; Goedhart, Hazel; Vesala, Markku; Schlee, Winfried. Somatosensory Tinnitus Diagnosis: Diagnostic Value of Existing Criteria. Ear & Hearing. 2021-07-14, 43 (1): 143–149. ISSN 1538-4667. PMID 34261856. S2CID 235907109. doi:10.1097/aud.0000000000001105. hdl:1942/34681
.
- ^ Palacios, Guillaume; Noreña, Arnaud; Londero, Alain. Assessing the Heterogeneity of Complaints Related to Tinnitus and Hyperacusis from an Unsupervised Machine Learning Approach: An Exploratory Study. Audiology and Neurotology. 2020, 25 (4): 174–189. ISSN 1420-3030. PMID 32062654. S2CID 211135952. doi:10.1159/000504741
.
- ^ What can we learn about tinnitus from social media posts?. Computational Audiology. 2021-06-07 [2022-01-20] (美国英语).
- ^ Barbour, Dennis L.; Howard, Rebecca T.; Song, Xinyu D.; Metzger, Nikki; Sukesan, Kiron A.; DiLorenzo, James C.; Snyder, Braham R. D.; Chen, Jeff Y.; Degen, Eleanor A.; Buchbinder, Jenna M.; Heisey, Katherine L. Online Machine Learning Audiometry. Ear & Hearing. July 2019, 40 (4): 918–926. ISSN 0196-0202. PMC 6476703
. PMID 30358656. doi:10.1097/AUD.0000000000000669 (英语).
- ^ Schlittenlacher, Josef; Turner, Richard E.; Moore, Brian C. J. Audiogram estimation using Bayesian active learning. The Journal of the Acoustical Society of America. 2018-07-01, 144 (1): 421–430. Bibcode:2018ASAJ..144..421S. ISSN 0001-4966. PMID 30075695. S2CID 51910371. doi:10.1121/1.5047436.
- ^ Schlittenlacher, Josef; Moore, Brian C. J. Fast estimation of equal-loudness contours using Bayesian active learning and direct scaling. Acoustical Science and Technology. 2020, 41 (1): 358–360. S2CID 214270892. doi:10.1250/ast.41.358
.
- ^ PP Remote Testing Wiki | Main / RemoteTesting. www.spatialhearing.org. [2022-01-20].
- ^ Resources. Computational Audiology. [2022-01-20] (美国英语).
- ^ Fortunato, Laura; Galassi, Mark. The case for free and open source software in research and scholarship. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2021-05-17, 379 (2197): 20200079. Bibcode:2021RSPTA.37900079F. PMID 33775148. S2CID 232387092. doi:10.1098/rsta.2020.0079.