跳转到内容

先天性巨结肠症

维基百科,自由的百科全书
先天性巨结肠症
异名无神经节性巨结肠、先天性巨结肠、先天性肠道无神经节症[1]
先天性巨结肠症的组织病理学图像,显示黏膜固有层中异常的乙酰胆碱酯酶(AchE)阳性神经纤维(棕色)。
症状便秘呕吐腹痛腹泻、生长缓慢[1]
并发症肠炎巨结肠肠梗阻肠穿孔[1][2]
起病年龄生命最初两个月内[1]
病程终生,需手术治疗
类型短段型、长段型[1]
病因遗传[1]
风险因素家族史[1]
诊断方法根据症状、活组织检查[3]
鉴别诊断慢性肠道假性阻塞胎粪性肠塞[2]
治疗手术[2]
患病率每5,000名新生儿中有1例[1]
分类和外部资源
医学专科医学遗传学
ICD-11LB16.1
OMIM600156、​606874、​606875、​608462、​611644
DiseasesDB5901
MedlinePlus001140
eMedicine178493
Orphanet388
[编辑此条目的维基数据]

先天性巨结肠症(英语:Hirschsprung disease, HSCR),又称赫什朋氏病,是一种罕见的先天性疾病,其特征是远端直肠开始,并向近端延伸长度不等的肠段缺乏神经节细胞(ganglion cells)。[4]这些神经节细胞正常情况下存在于肠壁的肌间神经丛(Auerbach plexus)和黏膜下神经丛(Meissner plexus)中,负责协调肠道蠕动。缺乏神经节细胞导致受影响的肠段无法正常松弛和蠕动,形成功能性的肠道阻塞。[4]

此病发生率约为每5,000名活产婴儿中有1例。[4]大约80%的患者在新生儿期(出生后4周内)被诊断出来,典型症状包括延迟排出胎粪(通常超过出生后24小时)、腹胀和呕吐。[4]

分类

[编辑]

先天性巨结肠症根据无神经节肠段的长度进行分类。虽然不同研究中的具体定义可能略有差异,但一般采用的标准化命名法及其特征和发生率如下表所示:[5]

先天性巨结肠症分类
类型 英文缩写 无神经节范围 发生率(约)
短段型 Short-segment HSCR 局限于直肠乙状结肠交界处或以下 72%
长段型 Long-segment HSCR 超过乙状结肠-降结肠交界处,但未达全结肠 15%
全结肠型 Total colonic HSCR (TCA) 整个结肠,可能波及末端回肠(<5厘米) 8%
小肠型 Small intestinal HSCR 延伸超过末端回肠5厘米以上 5%
全肠型 Total intestinal HSCR (TIA) 几乎整个肠道(特雷茨韧带以下有神经节肠段<20厘米) <1% [6][7]

流行病学

[编辑]

全球范围内,先天性巨结肠症的患病率估计在每万名活产婴儿中1.0至2.6例之间。不同地区和不同族裔群体间观察到的患病率差异,可能部分反映了真实的地理和种族差异,但也可能受到各地区疾病登记系统完整性和准确性的影响。[4][8][9][10]

与先天性巨结肠症相关的风险因素包括性别、母体因素、族裔背景、早产情况、相关综合症以及家族病史。总体来看,男性患病率显著高于女性,男女比例约在2.8:1至4.0:1之间。[4][9][11][12]然而,在伴有其他综合症的HSCR病例中,性别比例接近1:1;而在长段型或全结肠型HSCR中,男性比例也相对较低,约为1.2:1。[9][13][14]关于母体因素的研究有限,曾有研究指出母亲肥胖、生育超过三个孩子或母亲年龄大于30岁可能增加风险[9][15],但这些关联并未得到所有研究的证实。[4][9]不同族裔的患病率亦有差异,例如在美国,非裔、太平洋岛民和亚裔的发病率似乎高于西班牙裔[15][16],这可能与特定基因变异在不同人群中的频率不同有关。[17][18][19][20][21]

早产儿中HSCR的比例似乎较低(约6-7%)[22][23],但由于肠神经系统在妊娠中期已基本成熟[24],早产本身可能并非直接影响因素。

大约70%的HSCR病例是散发性的,但其馀30%可能与其他遗传综合症或染色体异常相关。[4][21]最常见的相关染色体异常是21三体综合症(唐氏综合症),约占HSCR病例的7.3%。[25]其他与HSCR有较强关联的综合症包括瓦登伯革氏症候群-Shah型(Waardenburg-Shah syndrome)、先天性中枢性换气不足综合症(CCHS,或称Haddad syndrome)、毛发-软骨发育不全综合症(Cartilage-hair hypoplasia)、Mowat-Wilson综合症等。[4]此外,约20-30%的HSCR患儿伴有其他系统的先天畸形[4][26][27],其中以肾脏和泌尿道畸形(CAKUT)最为常见(14-21%),建议对所有HSCR患儿进行相关筛查。[28][29]

家族史是重要的风险因素。有HSCR家族史的家庭,其后代患病风险显著增高,是普通人群的约200倍(整体复发风险约4%)。[21]对于长段型HSCR,家族复发风险更高,可达20-50%。[21]大约一半的家族性HSCR病例与RET基因的高外显率突变有关。[4][21]值得注意的是,即使父母未患病,也可能携带相关致病基因突变。[30]

发病机制

[编辑]

先天性巨结肠症的根本原因在于肠神经系统(Enteric Nervous System, ENS)在胚胎发育过程中未能完全形成。ENS是由数以亿计的神经元(即神经节细胞)和神经胶质细胞构成的复杂网络,分布在肠壁内的两个主要层次:位于纵肌层和环肌层之间的肌间神经丛(Auerbach plexus),以及位于黏膜下层的黏膜下神经丛(Meissner plexus)。[31]

ENS的主要细胞来源是神经脊细胞(Neural Crest Cells, NCCs)。在人类胚胎发育的早期(约妊娠第4至7周),源自迷走神经脊区域的NCCs会启动一段漫长的旅程,它们从消化道的最前端(食管)开始,沿著肠管壁向尾端(肛门)迁移。[31][32]这个迁移过程必须精确无误,NCCs需要不断增殖以维持足够的细胞数量,并在到达最终目的地后进行分化,形成成熟的神经元和胶质细胞,构建起功能完善的神经丛。肌间神经丛大约在妊娠第12周形成,黏膜下神经丛则在第12至16周形成。[33]如果在这个过程中,NCCs的迁移因为任何原因在中途停止,未能到达消化道的末端(尤其是远端结肠和直肠),那么这部分肠道就会缺乏正常的神经节细胞,导致其无法进行有效的肌肉收缩和舒张,从而引发HSCR。[34]NCCs的增殖不足或过早分化都可能导致迁移过程提前终止。[34]

除了迷走神经脊,骶神经脊的NCCs也参与构成盆腔神经丛,并可能对ENS的发育有一定贡献。[35][36][37][38]另外,许旺细胞前体也被发现可能分化成结直肠的部分神经元和胶质细胞。[39][40]这些发现提示ENS的发育和HSCR的发病机制可能比传统认为的更为复杂。

ENS的正常发育受到多种信号通路和环境因素的精确调控。其中,RET/GDNF通路和EDNRB/EDN3通路被认为是最关键的。RET原癌基因在迁移的NCCs上表达,其配体胶质细胞源性神经营养因子(GDNF)由肠道间质细胞分泌,这个组合对于NCCs的增殖、存活和定向迁移至关重要。[41]EDNRB基因及其配体内皮素-3(EDN3)则主要负责维持NCCs处于未分化的增殖状态,防止其过早分化。[42][43]这两条通路中任何一个环节出现问题,都可能导致NCCs迁移受阻,引发HSCR。

转录因子SOX10PHOX2B也在ENS发育中扮演重要角色,它们参与调控RET和EDNRB等关键基因的表达,并影响NCCs的增殖与分化状态。[44][45]

此外,肠道微环境中的细胞外基质(ECM)成分也对NCCs的迁移行为产生影响。一些ECM蛋白(如I型胶原、纤连蛋白、腱生蛋白)能够促进NCCs的迁移,而另一些(如VI型胶原、层粘连蛋白、多能蛋白聚糖)则可能阻碍迁移。[46][47][48][49][50][51][52][53][54]NCCs自身也能分泌基质金属蛋白酶来改造周围的ECM,为迁移创造有利条件。[54]因此,ENS的正常发育是NCCs与其微环境之间复杂相互作用的结果。

遗传学

[编辑]
类型 OMIM 基因 基因座
HSCR1 OMIM 142623 RET 10q11.2
HSCR2 OMIM 600155 EDNRB 13q22
HSCR3 OMIM 600837 GDNF 5p13.1-p12
HSCR4 OMIM 131242 EDN3 20q13.2-q13.3
HSCR5 OMIM 600156 ? 21q22
HSCR6 OMIM 606874 ? 3p21
HSCR7 OMIM 606875 ? 19q12
HSCR8 OMIM 608462 ? 16q23
HSCR9 OMIM 611644 ? 4q31-32
OMIM 602229 SOX10 22q13
OMIM 600423 ECE1 1p36.1
OMIM 602018 NRTN 19p13.3
OMIM 602595 GEMIN2 (Gem相关蛋白2) 14q13-q21
OMIM 191315 NTRK1 1q23.1
OMIM 605802 ZEB2 2q22.3

先天性巨结肠症是一种复杂的遗传性疾病,其遗传模式多样,包括常染色体显性、常染色体隐性以及多基因遗传,并表现出不完全外显和遗传异质性。[10]已有多个基因和染色体上的特定区域(基因座)被证实或提示与先天性巨结肠症相关。[来源请求]

在所有相关基因中,RET原癌基因(RET proto-oncogene)是迄今为止发现的最主要的致病基因,无论是在家族性病例还是在散发性病例中,其突变占比都是最高的。[55][56]RET基因编码一种受体酪氨酸激酶,对神经脊细胞在胚胎发育期间沿消化道的迁移至关重要。这些神经脊细胞最终分化形成神经节。RET基因的突变形式多样,遍布其整个编码区。[56]功能丧失性突变最为常见,尤其是在家族性和长段型HSCR中。[57][58][59][60]作为一个原癌基因,RET的突变或过度表达也与某些癌症(如甲状腺髓样癌神经母细胞瘤)相关[61],而这两种癌症在HSCR患者中的发生率也高于普通人群。RET基因也与唐氏综合症有关联,约2%的HSCR患者合并唐氏综合症。RET基因突变发生的时间越早,可能导致的HSCR病情越严重。[来源请求]

EDNRB基因是另一个与HSCR密切相关的基因,它编码内皮素受体B型蛋白,该蛋白参与神经细胞与消化道的连接。EDNRB的突变可能直接导致结肠缺乏某些神经纤维。[62]近期研究提示,调控EDNRB表达的基因组序列变异可能比之前认为的对HSCR的影响更大。[来源请求]

其他与HSCR相关的基因还包括编码RET配体的GDNFNRTN,编码EDNRB配体的EDN3,以及多个转录因子基因如SOX10PHOX2BZEB2等。

近年来,通过全基因组关联分析(GWAS)等方法,发现了神经调节蛋白1NRG1)和NRG3(NRG3)的常见和罕见DNA变异也与HSCR相关,最初在香港的华人患者中发现[63][64],随后在亚洲其他地区和欧洲人群中也得到证实。[65]NRG1和NRG3已知在ENS形成中发挥作用,因此它们的变异很可能参与了至少部分HSCR病例的发病过程。[来源请求]

此外,位于15号染色体长臂(15q23)的NOX5基因(编码NADPH氧化酶,EF手钙结合域5)也被发现与HSCR相关。[66]

HSCR的遗传基础极为复杂,涉及多种遗传变异类型(罕见编码变异、常见非编码变异、拷贝数变异等)的相互作用,并受到不完全外显率和表观遗传因素的影响。[10][67][68]

诊断

[编辑]
A: 腹部X光平片显示直肠乙状结肠处的部分性肛门直肠移行带(PARTZ),箭头所示。B: 腹部X光平片显示乙状结肠中段的PARTZ,箭头所示。C: 腹部X光平片显示降结肠处的PARTZ,箭头所示。D: 下消化道摄影显示直肠乙状结肠处的完整性食道移行带(CETZ),箭头所示。E: 下消化道摄影显示乙状结肠中段的CETZ,箭头所示。F: 下消化道摄影显示降结肠处的CETZ,箭头所示。

诊断HSCR通常需要综合评估临床表现、影像学检查结果以及决定性的组织病理学证据。

临床上,新生儿若出现典型的远端肠梗阻症状,如出生后超过24-48小时仍未排出胎粪、明显的腹胀、喂食困难以及胆汁性呕吐,应高度怀疑HSCR。[4]全结肠型或合并肠炎的患儿可能表现不典型,例如没有胎粪延迟甚至出现腹泻。[69][70][71]对于年龄较大的儿童或成人出现的难治性慢性便秘,也应考虑HSCR的可能性,尽管这种情况较为罕见。[72]询问家族史和检查是否存在相关畸形或综合症特征也是诊断过程的一部分。肠炎(HAEC)是HSCR最主要和最危险的并发症,其典型表现包括发烧、精神萎靡、呕吐、腹泻、便血和腹胀,可发生在术前或术后。[73][74]肠穿孔是罕见但危险的新生儿期并发症,可由严重梗阻、肠缺血或医源性损伤引起。[75]

影像学检查方面,腹部X光平片常可见肠管普遍扩张,而盆腔内气体稀少,提示远端梗阻。[4]下消化道摄影(对比剂灌肠)是更具提示性的检查,其典型征象是狭窄的远端(无神经节)肠段与扩张的近端(有神经节)肠段之间的“移行带”。[4]计算直肠乙状结肠指数(RSI < 1)或观察到无神经节肠段的不规则锯齿状收缩也有助于诊断。[4][76]然而,这些影像学表现并非绝对可靠,尤其在新生儿和全结肠型患者中可能缺如或不典型,因此影像学检查结果正常不能完全排除HSCR。[77][78]

肛门直肠测压可通过检测直肠扩张时肛门内括约肌是否出现反射性松弛(RAIR)来辅助诊断。RAIR的存在基本上可以排除HSCR。[79]但RAIR的缺如并非HSCR的特异性表现,其诊断的阳性预测值有限。[80]

最终确诊HSCR的金标准是进行直肠活组织检查。[81][82][83]无论是通过吸取式还是切取式活检,关键在于获取足够的、来自齿状线以上至少2.5厘米直肠壁的黏膜下层组织。[84][85]病理医生会在显微镜下仔细寻找神经节细胞。诊断HSCR的决定性依据是在充分的活检样本中完全找不到神经节细胞。[84][86][87]黏膜下神经纤维束的增粗、肥大是重要的辅助诊断特征,尤其在新生儿中(直径>40微米)。[84][88]免疫组织化学染色,特别是钙视网膜蛋白(Calretinin)染色,已成为重要的辅助诊断工具。正常情况下,直肠黏膜内应有丰富的Calretinin阳性神经纤维,而在HSCR患者中,这些纤维会完全缺如。[84][89]结合传统的组织形态学观察和免疫组化染色,绝大多数情况下可以准确诊断或排除HSCR。

鉴别诊断

[编辑]

在诊断HSCR时,特别是在新生儿期,需要排除其他可能导致远端肠梗阻或类似症状的疾病。这些疾病包括各种原因引起的肠道机械性梗阻,如先天性肠闭锁(回肠或结肠闭锁)、由囊性纤维化引起的胎粪性肠塞、与母亲妊娠期糖尿病相关的胎粪栓综合症小左结肠综合症,以及肛门直肠畸形(需要通过仔细的体格检查来识别)。[90]此外,还需考虑肠道功能性问题,例如慢性肠道假性阻塞(可能伴有其他系统异常),以及由败血症早产先天性甲状腺功能低下症、严重电解质紊乱或母亲药物影响等导致的继发性肠麻痹。[90]对比剂灌肠等影像学检查有助于区分这些不同的病因。

治疗

[编辑]

先天性巨结肠症的主要治疗方法是通过外科手术切除缺乏神经节细胞的病变肠段,然后将近端具有正常神经节细胞的健康肠段(拖出肠段)向下拉,并将其与肛门或紧邻肛门的直肠末端吻合。这种手术统称为拖出术(Pull-through procedure)。治疗的核心目标是解除由无神经节肠段引起的功能性梗阻,恢复肠道的连续性和尽可能正常的排便功能,从而改善患儿的生长发育和整体生活质素。

术前处理

[编辑]

在进行根治性的拖出术之前,通常需要进行术前准备。关键一步是确保梗阻上段扩张的肠道得到充分的减压,清除积聚的粪便。对于病变范围较短(如直肠乙状结肠型)的新生儿,通常可以通过规律地进行直肠洗肠(也称灌洗)来达到减压目的。[91]然而,如果病变范围较长(长段型或全结肠型),或者患儿年龄较大、肠道长期扩张严重,单纯洗肠可能效果不佳。[92][93]在这些情况下,医生可能会建议先进行肠造口术。造口通常选择在经术中活检证实有正常神经节细胞的最远端肠管上,这样可以让近端肠道得到彻底休息和减压,同时也能改善患儿的营养状况,为后续的拖出术创造更好的条件。对于全结肠无神经节的患儿,通常首选在回肠末端造口。[5][94]如果患儿在术前出现肠炎(HAEC),必须先给予积极治疗,包括肠道减压、静脉输液补充和使用抗生素控制感染,待病情稳定后才能考虑手术。[74][95]

手术时机与分期

[编辑]

关于拖出术的最佳手术时机,目前医学界尚无完全统一的意见。部分医疗中心倾向于在新生儿期确诊后尽早进行一期根治手术[96],而另一些中心则倾向于将手术延迟至婴儿1-3个月大或体重达到一定标准(如5公斤)时再进行[97],认为这样可能减少吻合口并发症和改善远期功能[98][99]。对于全结肠型需要行回肠拖出术的患儿,手术时机的选择更为谨慎,通常会等待回肠造口排出的粪便性质变得相对稠厚,且患儿营养状况良好、生长曲线满意时再进行手术。[100][101][102]

根据是否需要预先造口,手术可分为一期或分期进行。对于肠道准备充分的短段型HSCR,目前多数倾向于采用一期拖出术,即在一次手术中完成病变肠段切除和吻合,这样可以减少总住院次数和时间。[91][103][104]而对于需要先行造口减压的患者,则采用分期手术,即第一期做造口,第二期(通常在数月后)行拖出术并关闭造口(有时第二期和第三期可能合并)。[105]

手术入路与术式

[编辑]

拖出术可以通过不同的手术路径来完成,包括传统的开腹手术、创伤较小的腹腔镜辅助手术,或者完全经由肛门进行的经肛门拖出术(Transanal Endorectal Pull-Through, TEPT),后者尤其适用于短段型病变。[106][107][108]近年来,机械人辅助手术也被应用于HSCR的治疗,尤其可能在年龄较大儿童或需要精细盆腔解剖的翻修手术中发挥优势。[109][110][111]不同的手术入路各有优劣,选择需根据病变长度、患儿情况和医生的经验来决定。

历史上发展出了几种经典的拖出术术式,至今仍在应用,主要包括Swenson术、Soave术和Duhamel术。Swenson术是最早的方法,它彻底切除包括直肠肌层在内的全部无神经节肠段,然后将正常结肠直接与肛管做端端吻合。[112]Soave术则保留无神经节直肠的外层肌肉(形成一个肌肉袖套),仅剥离切除其内层的黏膜和黏膜下层,然后将正常结肠从肌肉袖套中拖出至肛门进行吻合。[113]Duhamel术是将正常结肠经直肠后方的间隙拖出,然后与保留的部分无神经节直肠的后壁做侧侧吻合,形成一个新的、部分由正常结肠构成的直肠后壁。[13]目前尚无充分证据表明某一种术式在长期效果上绝对优于其他术式,各有其适应症和潜在的并发症特点。[114]

术中确定病变范围

[编辑]

手术中最关键的步骤之一是准确确定无神经节肠段的范围,特别是找到神经节细胞开始出现的准确位置(移行带顶端)。这通常需要依靠术中快速病理检查(冰冻切片)来完成。医生会在手术过程中从肠壁不同高度取样(称为水平活检,levelling biopsies),送病理科快速检验是否存在神经节细胞。在确定了切除范围后,还应在预定吻合口近端的肠管切缘取一个环形样本(“甜甜圈”样本)再次送检,以确保吻合口处的肠道具有正常的结构。[95]尽管冰冻切片非常重要,但其结果与最终的石蜡切片诊断可能存在一定的不一致性,需要病理医生经验丰富。[115][116]

术后并发症及处理

[编辑]

尽管手术治疗先天性巨结肠症的总体效果良好,但术后仍可能出现一些并发症,需要及时识别和处理。

早期并发症

[编辑]

早期并发症主要包括吻合口相关问题,如吻合口漏(在Swenson术和Soave术后可能发生)或直肠残端漏(Duhamel术后特有),这些可能导致严重的盆腔感染、腹膜炎会阴脓肿,通常需要紧急处理,包括进行临时性肠造口以转流粪便、充分引流感染灶以及给予抗生素治疗。吻合口狭窄也是早期可能出现的问题,轻者可能通过定期扩张得到缓解,严重者可能需要再次手术。伤口感染等一般外科并发症也可能发生。

晚期并发症

[编辑]

晚期并发症则更多地表现为持续性的排便功能障碍。

持续性梗阻症状

[编辑]

患儿可能表现为术后仍然腹胀、严重便秘、需要频繁灌肠甚至发生肠炎。其原因多样,可能是吻合口或拖出肠段发生了机械性问题(如狭窄、扭转),也可能是手术未能完全切除无神经节肠段或移行带,或者是拖出的肠段本身存在动力异常,或者是肛门内括约肌在排便时未能正常松弛(称为内括约肌弛缓不能),还可能是患儿因排便疼痛等原因产生了行为性的憋便习惯。[117]处理这类问题需要系统评估,首先要通过影像学检查(如下消化道摄影)和直肠检查排除机械性梗阻。复阅原手术的病理报告或进行再次活检以确认吻合口近端肠段的神经节细胞状态至关重要。如果怀疑是内括约肌弛缓不能,可以尝试在肛门内括约肌注射肉毒杆菌素使其放松。如果存在明确的解剖或病理问题,或者内科治疗无效,则可能需要进行翻修手术。[118][119][120][121][122]

污粪

[编辑]

污粪(soiling)指无法控制的小量粪便渗漏。这可能是由于肛门括约肌功能受损(例如术中过度牵拉导致损伤[123])、直肠或肛管感觉异常、拖出肠段蠕动过快导致粪便停留时间过短,或者是由于便秘导致硬粪嵌塞而引起的溢流性失禁(也称假性失禁)。[124]评估时需要区分是括约肌或感觉缺陷导致的真性失禁,还是由梗阻或动力问题引起的假性失禁。治疗需要针对具体原因,可能包括调整饮食(如增加纤维以改善便秘,或采用减慢肠道蠕动的饮食),使用药物(如止泻药控制蠕动过快,或轻泻剂治疗便秘),以及实施规范的肠道管理计划(Bowel Management Program),例如定时灌肠。

术后肠炎 (HAEC)

[编辑]

术后肠炎(HAEC)是HSCR术后最常见且最严重的并发症之一,约有三分之一的患儿在术后会经历至少一次发作。[74]虽然HAEC在术后头两年最为常见,但在整个随访期间都可能发生。[125][126]唐氏综合症、全结肠型HSCR等是术后HAEC的高危因素。[125][126]其确切发病机制尚不完全清楚,目前认为可能与术后肠道动力持续异常、肠道屏障功能受损、黏膜免疫反应紊乱以及肠道菌群失调等多种因素有关。[125][127][128][129][130]对于反复发作的HAEC,需要积极寻找并纠正任何可能存在的潜在外科原因(如狭窄、残留无神经节肠段等)。如果找不到明确原因且内科治疗(包括抗生素、益生菌、饮食调整等)效果不佳,为了避免败血症、肠穿孔、营养不良等严重后果,可能最终需要再次行肠造口术。

生活质素

[编辑]

评估先天性巨结肠症患者的生活质素需要考虑多个方面,包括长期的排便功能、相关并发症的影响、以及心理社会因素。

一般预后

[编辑]

对于大多数短段型HSCR患者,经过适当手术治疗后,其长期的排便功能预后总体上是良好的。许多患者在成年后,其排便习惯和控制能力可以达到与普通人群相似的水平。[92][131][132]然而,在手术后的早期阶段,尤其是在婴幼儿期和儿童期,排便功能相关的症状相当普遍。[131][132]这些症状可能包括排便控制不佳(污粪或失禁)、直肠感觉异常、排便次数过多、间断性排便困难(梗阻症状)以及发生肠炎(HAEC)。随著年龄增长,这些问题大多会逐渐改善。但仍有约10%的患者即使到了成年期,仍会持续受到污粪问题的困扰,这无疑会对他们的社交、心理和整体生活质素产生负面影响。[92]

影响因素

[编辑]

影响HSCR患者生活质素的因素众多。首先,疾病本身的严重程度(即无神经节肠段的长度)是一个重要因素。长段型和全结肠型患者的预后通常不如短段型患者,他们不仅更容易出现术后并发症,特别是HAEC的发生率更高,而且由于切除了更长段的肠道(有时甚至包括部分小肠),更容易出现营养吸收不良和生长发育迟缓的问题,需要更密切的营养支持和监测。[133]

其次,是否合并其他染色体异常或遗传综合症对预后有显著影响。特别是那些影响到神经认知功能的综合症(如唐氏综合症、Mowat-Wilson综合症等),其排便功能的远期预后通常更差,且个体差异更大,更难预测。[134]在这些患儿中,污粪和尿失禁的发生率可能高达50%,甚至有相当一部分(高达22%)最终可能需要依赖永久性肠造口来处理严重的排便问题。[134]对于合并毛发-软骨发育不全综合症的患者,其固有的免疫缺陷会显著影响临床结局,增加感染、肺部疾病和恶性肿瘤的风险。[135][136]

此外,盆腔手术本身可能带来的潜在并发症,如泌尿系统功能障碍和性功能问题,也可能影响患者成年后的生活质素。[137][138][139]疾病本身和长期的治疗过程可能带来的心理社会压力也不容忽视。[140]

长期管理与过渡

[编辑]

对HSCR患者的管理需要采取多学科、全方位的长期跟进策略。这不仅包括处理排便功能问题,还需关注其营养状况、生长发育、以及可能的泌尿、性功能和心理社会问题。维持肠道微生态的平衡对于优化功能结局可能也很重要。[141]此外,需要注意HSCR患者成年后患炎症性肠病的风险可能增加[142][143][144],以及携带特定RET基因突变的患者患甲状腺髓样癌的风险。[145]

随著患者长大成人,需要一个结构化的过渡计划,帮助他们顺利地从儿科医疗系统转移到成人医疗系统,确保医疗护理的连续性。鼓励患者和家庭积极参与治疗决策,提高他们对疾病的理解和自我管理能力(健康素养),并利用患者支持组织获取信息和同伴支持,对于帮助他们应对可能持续存在的症状、保持积极心态至关重要。[92][146]

展望

[编辑]

尽管自1886年首次描述以来,先天性巨结肠症的诊断和治疗已取得显著进步,但仍有许多未解之谜和挑战有待克服。未来的研究有望在多个方面推动该领域的发展。

遗传学与基因组学

[编辑]

未来的研究需要进一步阐明HSCR复杂的遗传背景,识别更多相关基因及其相互作用,理解不同突变如何影响疾病的严重程度和表型。基因组学、蛋白质组学、代谢组学和转录组学等高通量技术,以及基因编辑等新技术的应用,将有助于深入揭示发病机制,并可能为开发针对特定基因突变的靶向治疗提供线索。

诊断技术

[编辑]

开发更准确、创伤更小、更可靠的诊断方法仍然是重要的研究方向,特别是用于诊断并发症(如HAEC)的方法。新的影像技术(如MRI)在评估肠道形态和功能方面的潜力值得探索,甚至包括产前诊断的可能性。人工智能机器学习技术有望应用于病理图像分析,提高诊断的准确性和效率,尤其是在缺乏经验丰富病理医生的地区。[147][148]此外,开发能够在手术中实时、准确判断无神经节肠段范围的技术,如共聚焦激光显微内镜[149][150],将对优化手术切除范围具有重要意义。

治疗新策略

[编辑]

仍需通过高质量的临床试验来比较不同手术技术的长期效果,确定是否存在适用于特定患者群体的最佳术式。同时,探索新的治疗策略也至关重要,包括进一步发展机械人辅助手术技术,以及研究非手术治疗的可能性。其中,干细胞疗法备受关注,全球多个研究团队正在尝试利用干细胞(如肠神经脊细胞或其前体)移植来重建缺失的神经节细胞,或构建生物工程肠段,以期恢复正常的肠道功能。[151][152][153]尽管动物实验已显示出潜力,但将其安全有效地应用于临床仍面临巨大挑战。

以患者为中心的研究

[编辑]

未来的研究应更加关注HSCR患者的长期结局,特别是排便功能、生活质素以及心理社会适应情况。需要开发有效的策略来预防和管理长期并发症。让患者和家属参与研究设计和实施,确保研究方向真正符合他们的需求和关切。利用移动医疗技术(如手机应用程式、可穿戴设备)进行症状监测、提供个性化支持和建议,有望改善患者的自我管理能力和生活质素,实现以价值为基础的医疗护理。[154][155]

参考书目

[编辑]
  • Montalva, Louise; Cheng, Lily S.; Kapur, Raj; Langer, Jacob C.; Berrebi, Dominique; Kyrklund, Kristiina; Pakarinen, Mikko; de Blaauw, Ivo; Bonnard, Arnaud; Gosain, Ankush. Hirschsprung disease. Nature Reviews Disease Primers. 2023-09-07, 9 (1): 54. PMID 37679431. doi:10.1038/s41572-023-00465-y. 

参考资料

[编辑]
  1. ^ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Hirschsprung disease. Genetics Home Reference. August 2012 [14 December 2017]. (原始内容存档于18 November 2017). 
  2. ^ 2.0 2.1 2.2 Hirschsprung Disease. NIDDK. July 2017 [14 December 2017]. (原始内容存档于24 November 2017). 
  3. ^ Hirschsprung's Disease. NORD (National Organization for Rare Disorders). 2017 [14 December 2017]. (原始内容存档于21 September 2017). 
  4. ^ 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 4.13 4.14 Amiel J, et al. Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet. 2008;45:1-14.
  5. ^ 5.0 5.1 Veras LV, et al. Guidelines for synoptic reporting of surgery and pathology in Hirschsprung disease. J Pediatr Surg. 2019;54:2017-2023.
  6. ^ Pini Prato A, et al. Skipped aganglionic lengthening transposition (SALT) for short bowel syndrome in patients with total intestinal aganglionosis: technical report and feasibility. Pediatr Surg Int. 2020;36:1507-1510.
  7. ^ Sauvat F, et al. Intestinal transplantation for total intestinal aganglionosis: a series of 12 consecutive children. J Pediatr Surg. 2008;43:1833-1838.
  8. ^ Best KE, et al. Epidemiology of Hirschsprung's disease in Europe: a systematic review. Birth Defects Res A Clin Mol Teratol. 2011;91:695-702.
  9. ^ 9.0 9.1 9.2 9.3 9.4 Suominen MJ, et al. Hirschsprung's disease in Finland: incidence, associated anomalies and mortality. J Pediatr Surg. 1997;32:4-7.
  10. ^ 10.0 10.1 10.2 Jiang Q, et al. A comprehensive review of the genetics of Hirschsprung disease. Genet Med. 2021;23:101-112.
  11. ^ Bradnock TJ, et al. Hirschsprung’s disease in the UK and Ireland: incidence and anomalies. Arch Dis Child. 2017;102:722-727.
  12. ^ Taghavi K, et al. Ethnic variations in the childhood prevalence of Hirschsprung disease in New Zealand. ANZ J Surg. 2019;89:1246-1249.
  13. ^ 13.0 13.1 Duhamel B. Retrorectal and transanal pull-through procedure for the treatment of Hirschsprung's disease. Arch Dis Child. 1963;38:142-148.
  14. ^ Xiao J, et al. Comprehensive characterization of the genetic landscape of familial Hirschsprung’s disease. World J Pediatr. 2023; https://doi.org/10.1007/s12519-023-00686-x
  15. ^ 15.0 15.1 Goldberg EL. An epidemiological study of Hirschsprung’s disease. Int J Epidemiol. 1984;13:479-485.
  16. ^ Anderson JE, et al. Epidemiology of Hirschsprung disease in California from 1995 to 2013. Pediatr Surg Int. 2018;34:1299-1303.
  17. ^ Tam PK. Hirschsprung’s disease: a bridge for science and surgery. J Pediatr Surg. 2016;51:18-22.
  18. ^ Gunadi et al. NRG1 variant efects in patients with Hirschsprung disease. BMC Pediatr. 2018;18:292.
  19. ^ Fadista J, et al. Genome-wide association study of Hirschsprung disease detects a novel low-frequency variant at the RET locus. Eur J Hum Genet. 2018;26:561-569.
  20. ^ Emison ES, et al. Diferential contributions of rare and common, coding and noncoding Ret mutations to multifactorial Hirschsprung disease liability. Am J Hum Genet. 2010;87:60-74.
  21. ^ 21.0 21.1 21.2 21.3 21.4 Moore SW. Chromosomal and related Mendelian syndromes associated with Hirschsprung’s disease. Pediatr Surg Int. 2012;28:1045-1058.
  22. ^ Chen Y, et al. The prevalence and clinical presentation of Hirschsprung’s disease in preterm infants: a systematic review and meta-analysis. Pediatr Surg Int. 2022;38:523-532.
  23. ^ Duess JW, et al. Prevalence of Hirschsprung’s disease in premature infants: a systematic review. Pediatr Surg Int. 2014;30:791-795.
  24. ^ Dershowitz LB, et al. Anatomical and functional maturation of the mid-gestation human enteric nervous system. Nat Commun. 2023;14:2680.
  25. ^ Friedmacher F & Puri P. Hirschsprung’s disease associated with Down syndrome: a meta-analysis of incidence, functional outcomes and mortality. Pediatr Surg Int. 2013;29:937-946.
  26. ^ Moore SW. The contribution of associated congenital anomalies in understanding Hirschsprung’s disease. Pediatr Surg Int. 2006;22:305-315.
  27. ^ Pini Prato A, et al. A prospective observational study of associated anomalies in Hirschsprung’s disease. Orphanet J Rare Dis. 2013;8:184.
  28. ^ Pini Prato A, et al. Congenital anomalies of the kidney and urinary tract in a cohort of 280 consecutive patients with Hirschsprung disease. Pediatr Nephrol. 2021;36:3151-3158.
  29. ^ Hofmann AD, et al. Congenital anomalies of the kidney and urinary tract (CAKUT) associated with Hirschsprung’s disease: a systematic review. Pediatr Surg Int. 2014;30:757-761.
  30. ^ Brosens E, et al. Genetics of enteric neuropathies. Dev Biol. 2016;417:198-208.
  31. ^ 31.0 31.1 Nagy N & Goldstein AM. Enteric nervous system development: a crest cell’s journey from neural tube to colon. Semin Cell Dev Biol. 2017;66:94-106.
  32. ^ Wallace AS & Burns AJ. Development of the enteric nervous system, smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract. Cell Tissue Res. 2005;319:367-382.
  33. ^ Rolle U, et al. Nitrergic innervation of the normal gut and in motility disorders of childhood. J Pediatr Surg. 2002;37:551-567.
  34. ^ 34.0 34.1 Anderson RB, et al. The cell adhesion molecule l1 is required for chain migration of neural crest cells in the developing mouse gut. Gastroenterology. 2006;130:1221-1232.
  35. ^ Burns AJ & Thapar N. Advances in ontogeny of the enteric nervous system. Neurogastroenterol Motil. 2006;18:876-887.
  36. ^ Kapur RP. Colonization of the murine hindgut by sacral crest-derived neural precursors: experimental support for an evolutionarily conserved model. Dev Biol. 2000;227:146-155.
  37. ^ Burns AJ, et al. Sacral neural crest cells colonise aganglionic hindgut in vivo but fail to compensate for lack of enteric ganglia. Dev Biol. 2000;219:30-43.
  38. ^ Burns AJ & Le Douarin NM. The sacral neural crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the development of the enteric nervous system. Development. 1998;125:4335-4347.
  39. ^ Uesaka T, et al. Neuronal diferentiation in Schwann cell lineage underlies postnatal neurogenesis in the enteric nervous system. J Neurosci. 2015;35:9879-9888.
  40. ^ Uesaka T, et al. Enhanced enteric neurogenesis by Schwann cell precursors in mouse models of Hirschsprung disease. Glia. 2021;69:2575-2590.
  41. ^ Ganz J. Gut feelings: studying enteric nervous system development, function, and disease in the zebrafish model system. Dev Dyn. 2018;247:268-278.
  42. ^ Barlow A, et al. Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET. Neuron. 2003;40:905-916.
  43. ^ Nagy N & Goldstein AM. Endothelin-3 regulates neural crest cell proliferation and diferentiation in the hindgut enteric nervous system. Dev Biol. 2006;293:203-217.
  44. ^ Bondurand N, et al. Maintenance of mammalian enteric nervous system progenitors by SOX10 and endothelin 3 signalling. Development. 2006;133:2075-2086.
  45. ^ Pattyn A, et al. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature. 1999;399:366-370.
  46. ^ Newgreen DF & Hartley L. Extracellular matrix and adhesive molecules in the early development of the gut and its innervation in normal and spotting lethal rat embryos. Acta Anat. 1995;154:243-260.
  47. ^ Soret R, et al. A collagen VI-dependent pathogenic mechanism for Hirschsprung’s disease. J Clin Invest. 2015;125:4483-4496.
  48. ^ Fu M, et al. 37/67-laminin receptor facilitates neural crest cell migration during enteric nervous system development. FASEB J. 2020;34:10931-10947.
  49. ^ Nagy N, et al. Collagen 18 and agrin are secreted by neural crest cells to remodel their microenvironment and regulate their migration during enteric nervous system development. Development. 2018;145:dev160317.
  50. ^ Nagy N, et al. Sonic hedgehog controls enteric nervous system development by patterning the extracellular matrix. Development. 2016;143:264-275.
  51. ^ Dutt S, et al. Versican V0 and V1 guide migratory neural crest cells. J Biol Chem. 2006;281:12123-12131.
  52. ^ Ring C, et al. Expression pattern of collagen IX and potential role in the segmentation of the peripheral nervous system. Dev Biol. 1996;180:41-53.
  53. ^ Nagy N, et al. Endothelial cells promote migration and proliferation of enteric neural crest cells via β1 integrin signaling. Dev Biol. 2009;330:263-272.
  54. ^ 54.0 54.1 Akbareian SE, et al. Enteric neural crest-derived cells promote their migration by modifying their microenvironment through tenascin-C production. Dev Biol. 2013;382:446-456.
  55. ^ Lyonnet S, et al. A gene for Hirschsprung disease maps to the proximal arm of chromosome 10. Nat Genet. 1993;4:346-350.
  56. ^ 56.0 56.1 Martucciello G, Ceccherini I, Lerone M, Jasonni V. Pathogenesis of Hirschsprung's disease. Journal of Pediatric Surgery. 2000, 35 (7): 1017–1025. PMID 10917288. doi:10.1053/jpsu.2000.7763. 
  57. ^ Ke J, et al. The advances of genetics research on Hirschsprung’s disease. Pediatr. Investig. 2, 189–195 (2018).
  58. ^ Tang CS, et al. Genetics of Hirschsprung’s disease. Pediatr. Surg. Int. 39, 104 (2023).
  59. ^ Brosens E, et al. Do RET somatic mutations play a role in Hirschsprung disease? Genet. Med. 20, 1477–1478 (2018).
  60. ^ Emison ES, et al. A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature 434, 857–863 (2005).
  61. ^ Chial, H. Proto-oncogenes to Oncogenes to Cancer. Nature Education. 2008, 1: 33. 
  62. ^ Puri P, Shinkai T. Pathogenesis of Hirschsprung's disease and its variants: recent progress. Semin. Pediatr. Surg. 2004, 13 (1): 18–24. PMID 14765367. S2CID 11395791. doi:10.1053/j.sempedsurg.2003.09.004. 
  63. ^ Garcia-Barcelo, Maria-Merce. Genome-wide association study identifies NRG1 as a susceptibility locus for Hirschsprung's disease. Proc. Natl. Acad. Sci. USA. 2009, 106 (8): 2694–2699. Bibcode:2009PNAS..106.2694G. PMC 2650328可免费查阅. PMID 19196962. doi:10.1073/pnas.0809630105可免费查阅. 
  64. ^ Tang, Clara. Genome-wide copy number analysis uncovers a new HSCR gene: NRG3.. PLOS Genet. May 10, 2012, 8 (5): e1002687. PMC 3349728可免费查阅. PMID 22589734. doi:10.1371/journal.pgen.1002687可免费查阅. 
  65. ^ Yang J, Duan S, Zhong R, Yin J, Pu J, Ke J, Lu X, Zou L, Zhang H, Zhu Z, Wang D, Xiao H, Guo A, Xia J, Miao X, Tang S, Wang G. Exome sequencing identified NRG3 as a novel susceptible gene of Hirschsprung's disease in a Chinese population. Mol. Neurobiol. 2013, 47 (3): 957–66. PMID 23315268. S2CID 16842806. doi:10.1007/s12035-012-8392-4. 
  66. ^ Shin JG, Seo JY, Seo JM, Kim DY, Oh JT, Park KW, Kim HY, Kim JH, Shin HD. Association analysis of NOX5 polymorphisms with Hirschsprung disease. J Pediatr Surg. 2019. PMID 30732963. doi:10.1016/j.jpedsurg.2019.01.018. 
  67. ^ Chatterjee S, et al. Enhancer variants synergistically drive dysfunction of a gene regulatory network in Hirschsprung disease. Cell. 2016;167:355-368.e10.
  68. ^ Luzon-Toro B, et al. What is new about the genetic background of Hirschsprung disease? Clin. Genet. 97, 114–124 (2020).
  69. ^ Kyrklund K, et al. Hirschsprung's disease--diagnostics and outcome. J Pediatr Surg. 2013;48:1015-1021.
  70. ^ Moore SW. Total colonic aganglionosis and Hirschsprung’s disease: shades of the same or diferent? Pediatr. Surg. Int. 25, 659–666 (2009).
  71. ^ Alnajar H, et al. Spectrum of clinicopathological deviations in long-segment Hirschsprung disease compared with short-segment Hirschsprung disease: a single-institution study. Int. J. Surg. Pathol. 25, 216–221 (2017).
  72. ^ Doodnath R & Puri P. A systematic review and meta-analysis of Hirschsprung’s disease presenting after childhood. Pediatr. Surg. Int. 26, 1107–1110 (2010).
  73. ^ Lewit RA, et al. Current understanding of Hirschsprung>associated enterocolitis: pathogenesis, diagnosis and treatment. Semin. Pediatr. Surg. 31, 151162 (2022).
  74. ^ 74.0 74.1 74.2 Gosain A, et al. Guidelines for the diagnosis and management of Hirschsprung-associated enterocolitis. Pediatr. Surg. Int. 33, 517–521 (2017).
  75. ^ Beltman L, et al. Risk factors for complications in patients with Hirschsprung disease while awaiting surgery: beware of bowel perforation. J. Pediatr. Surg. https://doi.org/10.1016/J.JPEDSURG.2022.02.022 (2022).
  76. ^ Garcia R, et al. Use of the recto-sigmoid index to diagnose Hirschsprung’s disease. Clin. Pediatr. 46, 59–63 (2007).
  77. ^ Stranzinger E, et al. Imaging of total colonic Hirschsprung disease. Pediatr. Radiol. 38, 1162–1170 (2008).
  78. ^ De Lorijn F, et al. Diagnostic tests in Hirschsprung disease: a systematic review. J. Pediatr. Gastroenterol. Nutr. 42, 496–505 (2006).
  79. ^ Liang Y, et al. Exploring the value of rectal anal canal pressure measurement in the diagnosis of Hirschsprung’s disease. Heliyon 8, e09619 (2022).
  80. ^ Baaleman DF, et al. The not-so-rare absent RAIR: internal anal sphincter achalasia in a review of 1072 children with constipation undergoing high-resolution anorectal manometry. Neurogastroenterol. Motil. 33, e14028 (2021).
  81. ^ Martucciello G. Hirschsprung's disease, one of the most dificult diagnoses in pediatric surgery: a review of the problems from clinical practice to the bench. J Pediatr Surg. 2008;43:103-115.
  82. ^ Muise ED & Cowles RA. Rectal biopsy for Hirschsprung’s disease: a review of techniques, pathology, and complications. World J. Pediatr. 12, 135–141 (2016).
  83. ^ Friedmacher F & Puri P. Rectal suction biopsy for the diagnosis of Hirschsprung’s disease: a systematic review of diagnostic accuracy and complications. Pediatr. Surg. Int. 31, 821–830 (2015).
  84. ^ 84.0 84.1 84.2 84.3 Ambartsumyan L, et al. Diagnosis of Hirschsprung disease. Pediatr. Dev. Pathol. 23, 8–22 (2020).
  85. ^ Muise ED, et al. A comparison of suction and full-thickness rectal biopsy in children. J. Surg. Res. 201, 149–155 (2016).
  86. ^ Qualman SJ, et al. Diagnosis of hirschsprung disease using the rectal biopsy: multi-institutional survey. Pediatr. Dev. Pathol. 2, 588–596 (1999).
  87. ^ Yunis EJ, et al. Rectal suction biopsy in the diagnosis of Hirschsprung disease in infants. Arch. Pathol. Lab. Med. 100, 329–333 (1976).
  88. ^ Kakita Y, et al. Selective demonstration of mural nerves in ganglionic and aganglionic colon by immunohistochemistry for glucose transporter-1: prominent extrinsic nerve pattern staining in Hirschsprung disease. Arch. Pathol. Lab. Med. 124, 1314–1319 (2000).
  89. ^ Logan SJ, et al. Calretinin staining in anorectal line biopsies accurately distinguished Hirschsprung disease in a retrospective study. Pediatr. Dev. Pathol. 25, 645–655 (2022).
  90. ^ 90.0 90.1 Zani A & Montalva L. in Encyclopedia of Gastroenterology 2nd edn (ed. Kuipers, E. J.) 644–651 (Academic, 2020).
  91. ^ 91.0 91.1 Somme S & Langer JC. Primary versus staged pull-through for the treatment of Hirschsprung disease. Semin. Pediatr. Surg. 13, 249–255 (2004).
  92. ^ 92.0 92.1 92.2 92.3 Jarvi K. et al. Bowel function and gastrointestinal quality of life among adults operated for Hirschsprung disease during childhood: a population-based study. Ann Surg. 252, 977–981 (2010).
  93. ^ Apte A, et al. Image of the month: decision-making in surgery for late onset Hirschsprung disease. Eur. J. Pediatr. Surg. Rep. 8, e99–e101 (2020).
  94. ^ Moore SW. Total colonic aganglionosis and Hirschsprung’s disease: a review. Pediatr. Surg. Int. 31, 1–9 (2015).
  95. ^ 95.0 95.1 Smith C, et al. Surgery, surgical pathology, and postoperative management of patients with Hirschsprung disease. Pediatr. Dev. Pathol. 23, 23–39 (2020).
  96. ^ Teitelbaum DH, et al. A decade of experience with the primary pull-through for Hirschsprung disease in the newborn period: a multicenter analysis of outcomes. Ann. Surg. 232, 372–380 (2000).
  97. ^ Zani A, et al. European Paediatric Surgeons’ Association survey on the management of Hirschsprung disease. Eur. J. Pediatr. Surg. 27, 96–101 (2017).
  98. ^ Kastenberg ZJ, et al. Perioperative and long-term functional outcomes of neonatal versus delayed primary endorectal pull-through for children with Hirschsprung disease: a pediatric colorectal and pelvic learning consortium study. J. Pediatr. Surg. 56, 1465–1469 (2021).
  99. ^ Westfal ML, et al. Optimal timing for Soave primary pull-through in short-segment Hirschsprung disease: a meta-analysis. J. Pediatr. Surg. 57, 719–725 (2022).
  100. ^ Bischof A, et al. Total colonic aganglionosis: a surgical challenge. How to avoid complications? Pediatr. Surg. Int. 27, 1047–1052 (2011).
  101. ^ Lamoshi A, et al. Timing of the definitive procedure and ileostomy closure for total colonic aganglionosis HD: systematic review. J. Pediatr. Surg. 55, 2366–2370 (2020).
  102. ^ Wood RJ & Garrison AP. Total colonic aganglionosis in Hirschsprung disease. Semin. Pediatr. Surg. 31, 151165 (2022).
  103. ^ Langer JC, et al. One-stage transanal Soave pullthrough for Hirschsprung disease: a multicenter experience with 141 children. Ann. Surg. 238, 569–576 (2003).
  104. ^ Giuliani S, et al. Outcomes of primary versus multiple-staged repair in Hirschsprung’s disease in England. Eur. J. Pediatr. Surg. 30, 104–110 (2020).
  105. ^ Hutchings EE, et al. The role of stomas in the initial and long-term management of Hirschsprung disease. J. Pediatr. Surg. 58, 236–240 (2023).
  106. ^ De La Torre-Mondragon L & Ortega-Salgado JA. Transanal endorectal pull-through for Hirschsprung's disease. J Pediatr Surg. 1998;33:1283-1286.
  107. ^ Georgeson KE, et al. Primary laparoscopic-assisted endorectal colon pull-through for Hirschsprung's disease: a new gold standard. Ann Surg. 2002;236:643-650.
  108. ^ Langer JC. Transanal one-stage Soave procedure for infants with Hirschsprung's disease. J Pediatr Surg. 2000;35:820-822.
  109. ^ Mottadelli G, et al. Robotic surgery in Hirschsprung disease: a unicentric experience on 31 procedures. J. Robot. Surg. https://doi.org/10.1007/S11701-022-01488-5 (2022).
  110. ^ Delgado-Miguel C & Camps JI. Robotic Soave pull-through procedure for Hirschsprung’s disease in children under 12-months: long-term outcomes. Pediatr. Surg. Int. 38, 51–57 (2022).
  111. ^ Li W, et al. Surgical management of Hirschsprung’s disease: a comparative study between conventional laparoscopic surgery, transumbilical single-site laparoscopic surgery, and robotic surgery. Front. Surg. 9, 924850 (2022).
  112. ^ Swenson O & Bill AH Jr. Resection of rectum and rectosigmoid with preservation of the sphincter for benign spastic lesions producing megacolon; an experimental study. Surgery. 1948;24:212-220.
  113. ^ Soave F. Hirschsprung's disease: a new surgical technique. J Pediatr Surg. 1966;1:201-211.
  114. ^ Celtik U, et al. Transanal endorectal or transabdominal pull-through for Hirschsprung’s disease; which is better? A systematic review and meta-analysis. Pediatr. Surg. Int. 39, 89 (2023).
  115. ^ Maia DM. The reliability of frozen-section diagnosis in the pathologic evaluation of Hirschsprung’s disease. Am. J. Surg. Pathol. 24, 1675–1677 (2000).
  116. ^ Shayan K, et al. Reliability of intraoperative frozen sections in the management of Hirschsprung’s disease. J. Pediatr. Surg. 39, 1345–1348 (2004).
  117. ^ Langer JC, et al. Guidelines for the management of postoperative obstructive symptoms in children with Hirschsprung disease. Pediatr. Surg. Int. 33, 523–526 (2017).
  118. ^ Ahmad H, et al. A Hirschsprung pull-through, ‘with a twist’. Eur. J. Pediatr. Surg. Rep. 8, e95–e98 (2020).
  119. ^ Gupta DK, et al. Experience with the redo pull-through for Hirschsprung’s disease. J. Indian Assoc. Pediatr. Surg. 24, 45–51 (2019).
  120. ^ Beltman L, et al. Transition zone pull-through in patients with Hirschsprung disease: is redo surgery beneficial for the long-term outcomes? J. Pediatr. Surg. https://doi.org/ 10.1016/J.JPEDSURG.2023.02.043 (2023).
  121. ^ Vickery JM, et al. Reoperation for Hirschsprung disease: two cases of vanishing ganglion cells and review of the literature. Pediatr. Dev. Pathol. 26, 77–85 (2023).
  122. ^ Sun S, et al. Usefulness of posterior sagittal anorectoplasty for redo pull-through in complicated and recurrent Hirschsprung disease: experience with a single surgical group. J. Pediatr. Surg. 52, 458–462 (2017).
  123. ^ Bokova E, et al. Reconstructing the anal sphincters to reverse iatrogenic overstretching following a pull-through for Hirschsprung disease. One-year outcomes. J. Pediatr. Surg. 58, 484–489 (2023).
  124. ^ Saadai P, et al. Guidelines for the management of postoperative soiling in children with Hirschsprung disease. Pediatr. Surg. Int. 35, 829–834 (2019).
  125. ^ 125.0 125.1 125.2 Chantakhow S, et al. Prognostic factors of postoperative Hirschsprung-associated enterocolitis: a cohort study. Pediatr. Surg. Int. 39, 77 (2023).
  126. ^ 126.0 126.1 Roorda D, et al. Risk factors for enterocolitis in patients with Hirschsprung disease: a retrospective observational study. J. Pediatr. Surg. 56, 1791–1798 (2021).
  127. ^ Menezes M & Puri P. Long-term clinical outcome in patients with Hirschsprung’s disease and associated Down’s syndrome. J. Pediatr. Surg. 40, 810–812 (2005).
  128. ^ Arnaud AP, et al. Diferent fecal microbiota in Hirschsprung’s patients with and without associated enterocolitis. Front. Microbiol. 13, 904758 (2022).
  129. ^ Pierre JF, et al. Intestinal dysbiosis and bacterial enteroinvasion in a murine model of Hirschsprung’s disease. J. Pediatr. Surg. 49, 1242–1251 (2014).
  130. ^ Gosain A, et al. Impaired cellular immunity in the murine neural crest conditional deletion of endothelin receptor-B model of Hirschsprung’s disease. PLoS ONE 10, e0128822 (2015).
  131. ^ 131.0 131.1 Neuvonen MI, et al. Bowel function and quality of life after transanal endorectal pull-through for Hirschsprung disease: controlled outcomes up to adulthood. Ann. Surg. 265, 622–629 (2017).
  132. ^ 132.0 132.1 Davidson JR, et al. Long-term surgical and patient-reported outcomes of Hirschsprung disease. J. Pediatr. Surg. 56, 1502–1511 (2021).
  133. ^ Stenström P, et al. Total colonic aganglionosis: multicentre study of surgical treatment and patient-reported outcomes up to adulthood. BJS Open. 4, 943–953 (2020).
  134. ^ 134.0 134.1 Davidson JR, et al. Outcomes in Hirschsprung’s disease with coexisting learning disability. Eur. J. Pediatr. 180, 3499–3507 (2021).
  135. ^ Vakkilainen S, et al. Immunodeficiency in cartilage–hair hypoplasia: pathogenesis, clinical course and management. Scand. J. Immunol. 92, e12913 (2020).
  136. ^ Mäkitie O, et al. Hirschsprung disease associated with severe cartilage–hair hypoplasia. J. Pediatr. 138, 929–931 (2001).
  137. ^ Davidson JR, et al. Sexual function, quality of life, and fertility in women who had surgery for neonatal Hirschsprung’s disease. Br. J. Surg. 108, E79–E80 (2021).
  138. ^ Trinidad S, et al. Long-term male sexual function and fecal incontinence outcomes for adult patients with Hirschsprung disease or anorectal malformation. J. Pediatr. Surg. https://doi.org/10.1016/J.JPEDSURG.2023.04.006 (2023).
  139. ^ Neuvonen M, et al. Lower urinary tract symptoms and sexual functions after endorectal pull-through for Hirschsprung disease: controlled long-term outcomes. J. Pediatr. Surg. 52, 1296–1301 (2017).
  140. ^ Svetanof WJ, et al. Psychosocial factors afecting quality of life in patients with anorectal malformation and Hirschsprung disease – a qualitative systematic review. J. Pediatr. Surg. 57, 387–393 (2022).
  141. ^ Neuvonen MI, et al. Intestinal microbiota in Hirschsprung disease. J. Pediatr. Gastroenterol. Nutr. 67, 594–600 (2018).
  142. ^ Granström AL, et al. Increased risk of inflammatory bowel disease in a population-based cohort study of patients with Hirschsprung disease. J. Pediatr. Gastroenterol. Nutr. 66, 398–401 (2018).
  143. ^ Granström AL, et al. Clinical characteristics and validation of diagnosis in individuals with Hirschsprung disease and inflammatory bowel disease. J. Pediatr. Surg. 56, 1799–1802 (2021).
  144. ^ Sutthatarn P, et al. Hirschsprung-associated inflammatory bowel disease: a multicenter study from the APSA Hirschsprung disease interest group. J. Pediatr. Surg. 58, 856–861 (2023).
  145. ^ Virtanen VB, et al. Thyroid cancer and co-occurring RET mutations in Hirschsprung disease. Endocr. Relat. Cancer 20, 595–602 (2013).
  146. ^ Roberts K, et al. Enhanced recovery after surgery in paediatrics: a review of the literature. BJA Educ. 20, 235–241 (2020).
  147. ^ Huang SG, et al. Machine learning-based quantitative analysis of barium enema and clinical features for early diagnosis of short-segment Hirschsprung disease in neonate. J. Pediatr. Surg. 56, 1711–1717 (2021).
  148. ^ Greenberg A, et al. Automatic ganglion cell detection for improving the eficiency and accuracy of Hirschprung disease diagnosis. Sci. Rep. 11, 3306 (2021).
  149. ^ Shimojima N, et al. Visualization of the human enteric nervous system by confocal laser endomicroscopy in Hirschsprung’s disease: an alternative to intraoperative histopathological diagnosis? Neurogastroenterol. Motil. 32, e13805 (2020).
  150. ^ Harada A, et al. Visualization of the human enteric nervous system by probe confocal laser endomicroscopy: a first real-time observation of Hirschsprung’s disease and allied disorders. BMC Med. Imaging 21, 118 (2021).
  151. ^ Nakazawa-Tanaka N, et al. Increased enteric neural crest cell diferentiation after transplantation into aganglionic mouse gut. Pediatr. Surg. Int. 39, 29 (2022).
  152. ^ Zhang L, et al. Cotransplantation of neuroepithelial stem cells with interstitial cells of Cajal improves neuronal diferentiation in a rat aganglionic model. J. Pediatr. Surg. 52, 1188–1195 (2017).
  153. ^ Fattahi F, et al. Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. Nature 531, 105–109 (2016).
  154. ^ Smits RM, et al. Common needs in uncommon conditions: a qualitative study to explore the need for care in pediatric patients with rare diseases. Orphanet J. Rare Dis. 17, 153 (2022).
  155. ^ Groenewoud AS, et al. Value based competition in health care’s ethical drawbacks and the need for a values-driven approach. BMC Health Serv. Res. 19, 256 (2019).

外部链接

[编辑]