把人/秋千系统看作一个变长的摆。其状态可以用摆长r和偏离垂直位置的角度
来表示。某一时刻摆的径向速度为
,切向速度为
。故系统的动能为
,系统的重力势能为
。所以,系统的Lagrangian量为

据此可以获得两个运动方程。其中关于径向运动的方程我们不感兴趣,因为那个是由荡秋千的人自主决定的。关于角度的运动方程为
,
代入Lagrangian量,化简得

两边都乘上
,得

左边的第一项可变为

代入后,化简为

现在把上式从时间0到T积分。其中时刻0规定为秋千位于左边最高处的时刻,并设此时的
。时刻T规定为秋千摆到右边最高处的时刻,并设此时
。则有:

因为在两个端点角速度都为零,所以第一项积分为零。于是可得

如果希望秋千越摆越高,也就是
,或
,那么只要满足以下判据即可

当然,考虑到人的位置必须复原,还应有条件

要满足以上条件,一种做法就是在角速度最大的时候(最低处)提高重心,产生一个负的径向速度。而在角速度最小的时候(最高处)降低重心,以复原位置,此时正的径向速度对判据积分没什么贡献。