跳转到内容

幾乎所有

维基百科,自由的百科全书

數學中,幾乎所有(英語:Almost all)表示「除了極少數可忽略的以外,其他都是」。更準確的說法,若集合,「集合中幾乎所有的元素」表示「集合中,不考慮在某個可忽略英语negligible set子集內元素的其他元素。」「可忽略」的具體意思則依上下文而定,可能是有限集合可數集零测集

相反的,幾乎沒有(almost no)表示「只有極少數可忽略的是」,「集合中幾乎沒有的元素」表示「集合中,只有在某個可忽略子集內的元素」。

不同數學領域中的意思

[编辑]

普遍的意思

[编辑]

數學裡的「幾乎所有」有時會指「无限集合中的元素,只有有限多個不符合,其餘都符合」的情形[1][2]。此用法也會用在哲學上[3]。「幾乎所有」也可以指「不可數集中的元素,只有可數數量的不符合,其餘都符合」的情形[sec 1]

例如:

量測理論中的意思

[编辑]
康托尔函数是幾乎處處導數都為零的函數

在探討实数時,有時「幾乎所有」是指「除了在某個零测集以外的所有實數。」[6][7][sec 2]。同様地,若S是某個實數集合,則「幾乎所有在集合S裡的數字」是指「除了在某個零测集以外,集合S的所有實數。」[8]數線可以視為是一維的欧几里得空间。在更廣義的n維空間(n為正整數),其定義則推廣為「除了在某個零测集以外,空間裡的所有點。」[sec 3]或是「除了在某個零测集以外,集合S裡的所有點。」 (此時,S是空間中點的集合)[9]。更廣義的說法,「幾乎所有」在测度理論中有時是指幾乎處處[10][11][sec 4],或是概率论中的几乎必然[11][sec 5]

例子:

數論中的意思

[编辑]

数论中的「幾乎所有正整數」可以指「自然密度為1集合裡的正整數」。也就是說,若A是一個正整數的集合,當n趨近無限大時,小於n,在集合A裡的正整數數量,除以小於n的正整數數量,比值趨近於1,則幾乎所有整數都是在集合A[16][17][sec 7]

若再進一步推廣,令S是正整數的無窮集合,例如正的偶數集合或是质数集合,若AS的子集合,且當n趨近無限大時,若集合A裡小於n的元素數量,除以集合S裡小於n的元素數量,比值趨近於1,則可以說幾乎所有集合S裡的元素都在集合A裡。

例子:

  • 正整數的餘有限集英语cofinite set其自然密度為1,因此每一個餘有限集都包括幾乎所有的正整數。
  • 幾乎所有正整數都是合数[sec 7][proof 1]
  • 幾乎所有正的偶數都可以表示為二個質數的和[4]:489
  • 幾乎所有質數都不是孪生素数。進一步說,針對每一個正整數g,幾乎所有質數的間隙都大於g,幾乎所有質數和其較大質數以及較小質數的間隔都都大於g,也就是說,在pgp + g之間沒有其他的質數[18]

拓撲學中的意思

[编辑]

topology[19],特別是动力系统理论[20][21][22](包括經濟學的應用)[23]拓扑空间內幾乎所有的點可以指「除了在某個貧乏集英语meagre set以外,所有此空間內的點。」有些則用更限定的定義,子集包括空間內幾乎所有的點,若這個子集包括某個开集稠密集[21][24][25]

例子:

代數中的意思

[编辑]

抽象代数数理逻辑中,若U是集合X超滤子,「集合X內幾乎所有元素」有時是指「U的部份元素內的元素」[26][27][28][29]。針對任何將X分為二個不交集集合划分,其中一個不交集包括X裡幾乎所有的元素。[29]

證明

[编辑]
  1. ^ 質數定理指出小於等於n的質數個數漸近等於n/ln(n)。因此,質數比例大約是ln(n)/n,隨著n趨近於无穷大,質數比例會趨近於0,而合數比例會趨近於1[17]

相關條目

[编辑]

參考資料

[编辑]

一次文獻

[编辑]
  1. ^ Cahen, Paul-Jean; Chabert, Jean-Luc. Integer-Valued Polynomials. Mathematical Surveys and Monographs 48. American Mathematical Society. 3 December 1996: xix. ISBN 978-0-8218-0388-2. ISSN 0076-5376. 
  2. ^ Cahen, Paul-Jean; Chabert, Jean-Luc. Chapter 4: What's New About Integer-Valued Polynomials on a Subset?. Hazewinkel, Michiel (编). Non-Noetherian Commutative Ring Theory. Mathematics and Its Applications 520. Springer. 7 December 2010: 85 [First published 2000]. ISBN 978-1-4419-4835-9. doi:10.1007/978-1-4757-3180-4. 
  3. ^ Gärdenfors, Peter. The Dynamics of Thought. Synthese Library 300. Springer. 22 August 2005: 190–191. ISBN 978-1-4020-3398-8. 
  4. ^ 4.0 4.1 Courant, Richard; Robbins, Herbert; Stewart, Ian. What is Mathematics? An Elementary Approach to Ideas and Methods 2nd. Oxford University Press. 18 July 1996. ISBN 978-0-19-510519-3. 
  5. ^ Movshovitz-hadar, Nitsa; Shriki, Atara. Logic In Wonderland: An Introduction To Logic Through Reading Alice's Adventures In Wonderland - Teacher's Guidebook. World Scientific. 2018-10-08: 38. ISBN 978-981-320-864-3 (英语). This can also be expressed in the statement: 'Almost all prime numbers are odd.' 
  6. ^ 6.0 6.1 Korevaar, Jacob. Mathematical Methods: Linear Algebra / Normed Spaces / Distributions / Integration 1. New York: Academic Press. 1 January 1968: 359–360. ISBN 978-1-4832-2813-6. 
  7. ^ Natanson, Isidor P. Theory of Functions of a Real Variable 1. 由Boron, Leo F.翻译 revised. New York: Frederick Ungar Publishing. June 1961: 90. ISBN 978-0-8044-7020-9. 
  8. ^ Sohrab, Houshang H. Basic Real Analysis 2. Birkhäuser. 15 November 2014: 307. ISBN 978-1-4939-1841-6. doi:10.1007/978-1-4939-1841-6. 
  9. ^ Helmberg, Gilbert. Introduction to Spectral Theory in Hilbert Space. North-Holland Series in Applied Mathematics and Mechanics 6 1st. Amsterdam: North-Holland Publishing Company. December 1969: 320. ISBN 978-0-7204-2356-3. 
  10. ^ Vestrup, Eric M. The Theory of Measures and Integration. Wiley Series in Probability and Statistics. United States: Wiley-Interscience. 18 September 2003: 182. ISBN 978-0-471-24977-1. 
  11. ^ 11.0 11.1 Billingsley, Patrick. Probability and Measure (PDF). Wiley Series in Probability and Statistics 3rd. United States: Wiley-Interscience. 1 May 1995: 60. ISBN 978-0-471-00710-4. (原始内容 (PDF)存档于23 May 2018). 
  12. ^ Niven, Ivan. Irrational Numbers. Carus Mathematical Monographs 11. Rahway: Mathematical Association of America. 1 June 1956: 2–5. ISBN 978-0-88385-011-4. 
  13. ^ Baker, Alan. A concise introduction to the theory of numbers. Cambridge University Press. 1984: 53. ISBN 978-0-521-24383-4. 
  14. ^ Granville, Andrew; Rudnick, Zeev. Equidistribution in Number Theory, An Introduction. Nato Science Series II 237. Springer. 7 January 2007: 11. ISBN 978-1-4020-5404-4. 
  15. ^ Burk, Frank. Lebesgue Measure and Integration: An Introduction. A Wiley-Interscience Series of Texts, Monographs, and Tracts. United States: Wiley-Interscience. 3 November 1997: 260. ISBN 978-0-471-17978-8. 
  16. ^ Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work. Cambridge University Press. 1940: 50. 
  17. ^ 17.0 17.1 Hardy, G. H.; Wright, E. M. An Introduction to the Theory of Numbers 4th. Oxford University Press. December 1960: 8–9. ISBN 978-0-19-853310-8. 
  18. ^ Prachar, Karl. Primzahlverteilung. Grundlehren der mathematischen Wissenschaften 91. Berlin: Springer. 1957: 164 (德语).  Cited in Grosswald, Emil. Topics from the Theory of Numbers 2nd. Boston: Birkhäuser. 1 January 1984: 30. ISBN 978-0-8176-3044-7. 
  19. ^ Oxtoby, John C. Measure and Category. Graduate Texts in Mathematics 2 2nd. United States: Springer. 1980: 59,68. ISBN 978-0-387-90508-2.  While Oxtoby does not explicitly define the term there, Babai has borrowed it from Measure and Category in his chapter "Automorphism Groups, Isomorphism, Reconstruction" of Graham, Grötschel and Lovász's Handbook of Combinatorics (vol. 2), and Broer and Takens note in their book Dynamical Systems and Chaos that Measure and Category compares this meaning of "almost all" to the measure theoretic one in the real line (though Oxtoby's book discusses meagre sets in general topological spaces as well).
  20. ^ Baratchart, Laurent. Recent and New Results in Rational L2 Approximation. Curtain, Ruth F. (编). Modelling, Robustness and Sensitivity Reduction in Control Systems. NATO ASI Series F 34. Springer. 1987: 123. ISBN 978-3-642-87516-8. doi:10.1007/978-3-642-87516-8. 
  21. ^ 21.0 21.1 Broer, Henk; Takens, Floris. Dynamical Systems and Chaos. Applied Mathematical Sciences 172. Springer. 28 October 2010: 245. ISBN 978-1-4419-6870-8. doi:10.1007/978-1-4419-6870-8. 
  22. ^ Sharkovsky, A. N.; Kolyada, S. F.; Sivak, A. G.; Fedorenko, V. V. Dynamics of One-Dimensional Maps. Mathematics and Its Applications 407. Springer. 30 April 1997: 33. ISBN 978-94-015-8897-3. doi:10.1007/978-94-015-8897-3. 
  23. ^ Yuan, George Xian-Zhi. KKM Theory and Applications in Nonlinear Analysis. Pure and Applied Mathematics; A Series of Monographs and Textbooks. Marcel Dekker. 9 February 1999: 21. ISBN 978-0-8247-0031-7. 
  24. ^ Albertini, Francesca; Sontag, Eduardo D. Transitivity and Forward Accessibility of Discrete-Time Nonlinear Systems. Bonnard, Bernard; Bride, Bernard; Gauthier, Jean-Paul; Kupka, Ivan (编). Analysis of Controlled Dynamical Systems. Progress in Systems and Control Theory 8. Birkhäuser. 1 September 1991: 29. ISBN 978-1-4612-3214-8. doi:10.1007/978-1-4612-3214-8. 
  25. ^ De la Fuente, Angel. Mathematical Models and Methods for Economists. Cambridge University Press. 28 January 2000: 217. ISBN 978-0-521-58529-3. 
  26. ^ Komjáth, Péter; Totik, Vilmos. Problems and Theorems in Classical Set Theory. Problem Books in Mathematics. United States: Springer. 2 May 2006: 75. ISBN 978-0387-30293-5. 
  27. ^ Salzmann, Helmut; Grundhöfer, Theo; Hähl, Hermann; Löwen, Rainer. The Classical Fields: Structural Features of the Real and Rational Numbers. Encyclopedia of Mathematics and Its Applications 112. Cambridge University Press. 24 September 2007: 155. ISBN 978-0-521-86516-6. 
  28. ^ Schoutens, Hans. The Use of Ultraproducts in Commutative Algebra. Lecture Notes in Mathematics 1999. Springer. 2 August 2010: 8. ISBN 978-3-642-13367-1. doi:10.1007/978-3-642-13368-8. 
  29. ^ 29.0 29.1 Rautenberg, Wolfgang. A Concise to Mathematical Logic. Universitext 3rd. Springer. 17 December 2009: 210–212. ISBN 978-1-4419-1221-3. doi:10.1007/978-1-4419-1221-3. 

二次文獻

[编辑]
  1. ^ Schwartzman, Steven. The Words of Mathematics: An Etymological Dictionary of Mathematical Terms Used in English需要免费注册. Spectrum Series. Mathematical Association of America. 1 May 1994: 22. ISBN 978-0-88385-511-9. 
  2. ^ Clapham, Christopher; Nicholson, James. The Concise Oxford Dictionary of mathematics. Oxford Paperback References 4th. Oxford University Press. 7 June 2009: 38. ISBN 978-0-19-923594-0. 
  3. ^ James, Robert C. Mathematics Dictionary 5th. Chapman & Hall. 31 July 1992: 269. ISBN 978-0-412-99031-1. 
  4. ^ Bityutskov, Vadim I. Almost-everywhere. Hazewinkel, Michiel (编). Encyclopaedia of Mathematics 1. Kluwer Academic Publishers. 30 November 1987: 153 [2025-01-28]. ISBN 978-94-015-1239-8. doi:10.1007/978-94-015-1239-8. (原始内容存档于2022-07-06). 
  5. ^ Itô, Kiyosi (编). Encyclopedic Dictionary of Mathematics 2 2nd. Kingsport: MIT Press. 4 June 1993: 1267. ISBN 978-0-262-09026-1. 
  6. ^ Almost All Real Numbers are Transcendental - ProofWiki. proofwiki.org. [2019-11-11]. (原始内容存档于2024-12-01). 
  7. ^ 7.0 7.1 埃里克·韦斯坦因. Almost All. MathWorld.  See also Weisstein, Eric W. CRC Concise Encyclopedia of Mathematics 1st. CRC Press. 25 November 1988: 41. ISBN 978-0-8493-9640-3. 
  8. ^ Itô, Kiyosi (编). Encyclopedic Dictionary of Mathematics 1 2nd. Kingsport: MIT Press. 4 June 1993: 67. ISBN 978-0-262-09026-1. 

外部連結

[编辑]