测度空间是测度论的基本概念,可以看做是面積概念的推廣,由一个基本的集合
以及基于这集合的某些子集合所构成的一個新的集合
,這新集合會滿足 σ-代数的性質,直覺的講,對
中的元素我們都可以用某種方法去「測量」其大小、面積或機率等,其真正意義要看所在空間
來決定。和一個定義在
上滿足某些特別性質的(非負)函數
,也就是测度,測度空間就由這三部分,
,所構成。测度空间的一个实例是概率空間。
可測度空間(measurable space)包含前兩部分但不含測度。
一个测度空间包含三部分資訊
,且滿足下列條件:[1][2]
为非空集合
为
上的一个 σ-代数,也就是满足某些条件的
中的一些子集构成的集合。
为
上的测度,換句話講,是一个定義在
上的有特別性質的(非負)函数。
对集合

取

定义

则根据测度的可数可加性,
另根据测度的定义,
则
为一个测度空间。
本例中的测度对应于
的伯努利分布。