跳转到内容

69

本页使用了标题或全文手工转换
维基百科,自由的百科全书
69
← 68 69 70 →
数表整数

<<  60 61 62 63 64 65 66 67 68 69 >>

命名
小寫六十九
大寫陸拾玖
序數詞第六十九
sixty-ninth
識別
種類整數
性質
質因數分解
表示方式
69
算筹
希腊数字ΞΘ´
羅馬數字LXIX
巴比伦数字𒐕𒐝在维基数据编辑
二进制1000101在维基数据编辑
三进制2120在维基数据编辑
四進制1011在维基数据编辑
五進制234在维基数据编辑
六进制153在维基数据编辑
九進位76在维基数据编辑
八进制105在维基数据编辑
十进制69在维基数据编辑
十一进制63在维基数据编辑
十二进制59在维基数据编辑
十六进制45在维基数据编辑
二十进制39在维基数据编辑
二进制1000101(2)
三进制2120(3)
四进制1011(4)
五进制234(5)
八进制105(8)
十二进制59(12)
十六进制45(16)

69(中文也作六十九,罗马数字为LXIX)是介于6870之间的自然数。69既是奇数又是合数,能被1323和69整除。

在数学中

[编辑]

69是半素数,因为它是两个素数323)的乘积,也是6771这兩個連續奇質數算術平均數[1][2]。69不能被1以外的任何平方数整除,因此它是无平方因子数[3]。69亦是布卢姆数,因为69的两个因数都是高斯素数,并且位在乌拉姆数列,是数列中先前出现的两个不同的乌拉姆数的和[a][4][6]。69是亏数,因为它的真约数和(不包括自身的)小于自身[7]。作为一个正因数算术平均值也是整数的整数,69亦为算术数[8]。69是有理直角三角面积数(一个正整数,其面积等于三条有理数边的直角三角形),亦为可服从数[9][10]。69可以用多种方式表示为连续正整数的和,因此它是一个礼貌数[11]。69是一个幸运数,因为它是从1开始,在自然数序列中重复移除每n个数字后剩下的自然数[b][13][14]

十进制中,69的平方(4761)和立方(328 509)使用0–9中的每个数字恰好一次(即唯一一个)[15][16]。它也是阶乘小于1古戈尔的最大数。在许多手持式科学计算器图形计算器上,69! (1.711224524×1098) 是由于内存限制而可以计算的最高阶乘[17]。在其二进制展开式1000101中[18],69等于八进制中的105,而105等于十六进制中的69(同一属性可应用于从64到69的间的所有数字)[19][20]。在计算机科学计算中,69等于三进制(基数为3)中的2120;六进制(基数为6)中的153;以及十二进制(基数为12)中的59[21][22][23]

从视觉上讲,在阿拉伯数字中,69为一旋转对称数,因为无论正看还是反看,它看起来都相同[24]。69为一中心四面体数,该数形似金字塔,底部为三角形,其他所有点都在底部上方层层排列,形成四面体形[25]。69也是一个有害数,因为当它转写成二进制时,1的个数为质数;它也是一个可恶数,因为它是一个正整数,在二进制展开式中,1的个数为奇数[26][27]

在文化中

[编辑]

69式性交体位是指双方同时对方口交的性交体位[28]。69用以指代这种性交体位,其本身因为其的有趣性成为网络迷因。当每次看到这个数字时,一些人会使用“好”来引起注意[29]。这意味着用69幽默地暗示这种性交体位是故意的。由于与这种性交体位以及由此产生的迷因的联系,69被称为“性爱数字”[29]

参见

[编辑]

脚注

[编辑]
  1. ^ 根据乌拉姆序列的定义,3是乌拉姆数(1 + 2),4是乌拉姆数(1 + 3)。5 不是乌拉姆数,因为 5 = 1 + 4 = 2 + 3。69是乌拉姆数,因为它是16 + 53的和;16和53都是乌拉姆数[4] [5]
  2. ^ 其中n是列表中最后一个幸存数字之后的下一个数字;数字列表中(1到无穷大)的每个第二个数字(所有偶数)首先被消除(1、3、5、7、9、11……),每第三个数字(1、3、7、9……),然后每第七个数字被消除,依此类推[12]

参考资料

[编辑]
  1. ^ Neil, Sloane; Guy, R. K. A001358: Semiprimes (or biprimes): products of two primes.. On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2010-08-22 [2024-04-22]. (原始内容存档于2019-04-19). 
  2. ^ Kimberling, Clark. A024675: Average of two consecutive odd primes.. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. n.d. [2024-04-22]. (原始内容存档于2024-03-04). 
  3. ^ Sloane, Neil. A005117: Squarefree numbers: numbers that are not divisible by a square greater than 1.. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. n.d. [2024-04-22]. (原始内容存档于2019-05-27). 
  4. ^ 4.0 4.1 Gupta, Shyam Sunder. Smarandache sequence of Ulam numbers. Wenpeng, Zhang (编). Research on Number Theory and Smarandache Notions: Proceedings of the Fifth International Conference on Number Theory and Smarandache Notions. Hexis. 2009: 78. ISBN 9781599730882. 
  5. ^ Recaman, Bernardo. Questions on a sequence of Ulam. American Mathematical Monthly (Mathematical Association of America). 1973, 80 (8): 919–920. JSTOR 2319404. doi:10.2307/2319404. 
  6. ^ Wilson, Robert G. A016105: Blum integers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. n.d. [2024-04-22]. (原始内容存档于2018-10-17). 
  7. ^ Sloane, Neil; Steinerberger, Stefan. A005100: Deficient numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2006-03-31 [2024-04-22]. (原始内容存档于2023-03-22). 
  8. ^ Sloane, Neil; Bernstein, Mira. A003601: Numbers j such that the average of the divisors of j is an integer: sigma_0(j) divides sigma_1(j). Alternatively, numbers j such that tau(j) (A000005(j)) divides sigma(j) (A000203(j)).. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2006-04-03 [2024-04-22]. (原始内容存档于2024-03-26). 
  9. ^ Alter, Ronald; Curtz, Thaddeus B. A Note on Congruent Numbers. Mathematics of Computation (American Mathematical Society). January 1974, 28 (125): 304–305. JSTOR 2005838. doi:10.2307/2005838. 
  10. ^ Beedassy, Lekraj. A100832: Amenable numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2005-01-07 [2024-04-22]. (原始内容存档于2023-12-19). 
  11. ^ Orlovsky, Vladimir Joseph Stephan; White, Carl R. A138591: Sums of two or more consecutive nonnegative integers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2009-07-22 [2024-04-22]. (原始内容存档于2019-03-12). 
  12. ^ Giblin, P[eter] J. Primes and Programming. Cambridge University Press. 1993: 67. ISBN 9780521409889. 
  13. ^ Neil, Sloane. A002808: Composite numbers. On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2010-12-16 [2024-04-22]. (原始内容存档于2024-05-11). 
  14. ^ Neil, Sloane. A000959: Lucky numbers. On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2008-03-07 [2024-04-22]. (原始内容存档于2019-04-19). 
  15. ^ Wells, David. The Penguin Dictionary of Curious and Interesting Numbers 2. Penguin Books. 1997: 100. ISBN 0-14-008029-5. 
  16. ^ Barbeau, Edward. Power Play. Mathematical Association of America. 1997: 126. ISBN 9780883855232. 
  17. ^ Brannan, David Alexander. A First Course in Mathematical Analysis. Cambridge University Press. 2006: 303. ISBN 9781139458955. 
  18. ^ Konheim, Alan G. Computer Security and Cryptography. Wiley. 2007: 382. ISBN 9780470083970. 
  19. ^ Topham, Douglas W. A System V Guide to UNIX and XENIX. Springer New York. 2012: 78. ISBN 9781461232469. 
  20. ^ Holmay, Patrick. ASCII Character Set (Continued). The OpenVMS User's Guide. Elsevier Science. 1998: 272. ISBN 9781555582036. 
  21. ^ Clifford, Jerrold R.; Clifford, Martin. Computer Mathematics Handbook. Allyn & Bacon. 1974: 276. 
  22. ^ Scott, Norman Ross. Analog and Digital Computer Technology. McGraw-Hill. 1960: 221. 
  23. ^ Meyer, Jerome S. More Fun with Mathematics. Gramercy Publishing Company. 1963: 73. 
  24. ^ Deza, Elena. Perfect And Amicable Numbers. World Scientific. 2013: 390. ISBN 9789811259647. 
  25. ^ Deza, Elena; Deza, Michel. Figurative Numbers. World Scientific. 2012: 126–127. ISBN 9789814355483. 
  26. ^ Gow, Jeremy. A052294: Pernicious numbers: numbers with a prime number of 1's in their binary expansion. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2000-02-08 [2024-04-22]. 
  27. ^ Sloane, Neil. A000069: Odious numbers: numbers with an odd number of 1's in their binary expansion. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. n.d. [2024-04-22]. (原始内容存档于2018-09-11). 
  28. ^ Coleman, Julia. Love, Sex, and Marriage: A Historical Thesaurus. Brill Publishers. 2022: 214. ISBN 9789004488502. 
  29. ^ 29.0 29.1 Feldman, Brian. Why 69 Is the Internet's Coolest Number (Sex). Intelligencer. 2016-06-09 [2024-04-22]. (原始内容存档于2022-08-04).