派克轉換 (也譯作帕克轉換 ,英語 :Park's Transformation),是目前分析同步電動機 及感應馬達 執行最常用的一種坐標轉換,由美國工程師羅伯特·H·帕克 在1929年提出。派克轉換將定子的a,b,c三相電流投影到隨著轉子旋轉的直軸(d軸),交軸(q軸)與垂直於dq平面的零軸(0軸)上去,從而實現了對定子電感矩陣的對角化 ,對電動機的執行分析起到了簡化作用。
派克正轉換:
i
d
q
0
=
P
i
a
b
c
=
2
3
[
cos
θ
cos
(
θ
−
120
∘
)
cos
(
θ
+
120
∘
)
−
sin
θ
−
sin
(
θ
−
120
∘
)
−
sin
(
θ
+
120
∘
)
1
2
1
2
1
2
]
[
i
a
i
b
i
c
]
{\displaystyle {\mathbf {i} }_{dq0}={\mathbf {P} }{\mathbf {i} }_{abc}={\frac {2}{3}}\left[{\begin{array}{*{20}c}{\cos \theta }&{\cos \left({\theta -120^{\circ }}\right)}&{\cos \left({\theta +120^{\circ }}\right)}\\{-\sin \theta }&{-\sin \left({\theta -120^{\circ }}\right)}&{-\sin \left({\theta +120^{\circ }}\right)}\\{\frac {1}{2}}&{\frac {1}{2}}&{\frac {1}{2}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{i_{a}}\\{i_{b}}\\{i_{c}}\\\end{array}}\right]}
逆轉換:
i
a
b
c
=
P
−
1
i
d
q
0
=
[
cos
θ
−
sin
θ
1
cos
(
θ
−
120
∘
)
−
sin
(
θ
−
120
∘
)
1
cos
(
θ
+
120
∘
)
−
sin
(
θ
+
120
∘
)
1
]
[
i
d
i
q
i
0
]
{\displaystyle {\mathbf {i} }_{abc}={\mathbf {P} }^{-1}{\mathbf {i} }_{dq0}=\left[{\begin{array}{*{20}c}{\cos \theta }&{-\sin \theta }&1\\{\cos \left({\theta -120^{\circ }}\right)}&{-\sin \left({\theta -120^{\circ }}\right)}&1\\{\cos \left({\theta +120^{\circ }}\right)}&{-\sin \left({\theta +120^{\circ }}\right)}&1\\\end{array}}\right]\left[{\begin{array}{*{20}c}{i_{d}}\\{i_{q}}\\{i_{0}}\\\end{array}}\right]}
派克轉換也作用在定子電壓與定子繞組磁鏈上:
u
d
q
0
=
P
u
a
b
c
{\displaystyle {\mathbf {u} }_{dq0}={\mathbf {P} }{\mathbf {u} }_{abc}}
,
Ψ
d
q
0
=
P
Ψ
a
b
c
{\displaystyle {\mathbf {\Psi } }_{dq0}={\mathbf {P} }{\mathbf {\Psi } }_{abc}}
上圖描繪了派克轉換的幾何意義,定子三相電流互成120度角,
δ
{\displaystyle \delta }
為定子電流落後於它們對應的相電壓的角度。直軸與交軸電流分別等於定子三相電流在d軸與q軸上的投影。(圖中的比例係數
3
2
{\displaystyle {\sqrt {\frac {3}{2}}}}
是由於圖中所採用的是正交形式的派克轉換)d-q坐標系在空間中以角速度
ω
{\displaystyle \omega }
逆時針旋轉,故
θ
=
ω
t
{\displaystyle \theta =\omega t}
以d軸領先a相軸線的方向為正。當定子電流為三相對稱的正弦交流電時,
i
d
{\displaystyle i_{d}}
,
i
q
{\displaystyle i_{q}}
為直流電流,
i
0
=
0
{\displaystyle i_{0}=0}
。
磁鏈方程式:
[
Ψ
a
b
c
Ψ
f
D
Q
]
=
[
L
S
S
L
S
R
L
R
S
L
R
R
]
[
−
i
a
b
c
i
f
D
Q
]
{\displaystyle \left[{\begin{array}{*{20}c}{{\mathbf {\Psi } }_{abc}}\\{{\mathbf {\Psi } }_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf {L} }_{SS}}&{{\mathbf {L} }_{SR}}\\{{\mathbf {L} }_{RS}}&{{\mathbf {L} }_{RR}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf {i} }_{abc}}\\{{\mathbf {i} }_{fDQ}}\\\end{array}}\right]}
上式中的電感係數矩陣
L
S
S
,
L
S
R
,
L
R
S
,
L
R
R
{\displaystyle {{\mathbf {L} }_{SS}},{{\mathbf {L} }_{SR}},{{\mathbf {L} }_{RS}},{{\mathbf {L} }_{RR}}}
事實上都含有隨時間變化的角度參數[ 1] ,使得方程式求解困難。
現對等式兩邊同時左乘
[
P
U
]
{\displaystyle \left[{\begin{array}{*{20}c}{\mathbf {P} }&{}\\{}&{\mathbf {U} }\\\end{array}}\right]}
,其中
U
{\displaystyle {\mathbf {U} }}
為三階單位矩陣 。方程式化為:
[
Ψ
d
q
0
Ψ
f
D
Q
]
=
[
P
U
]
[
L
S
S
L
S
R
L
R
S
L
R
R
]
[
P
−
1
U
]
[
−
i
a
b
c
i
f
D
Q
]
{\displaystyle \left[{\begin{array}{*{20}c}{{\mathbf {\Psi } }_{dq0}}\\{{\mathbf {\Psi } }_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{\mathbf {P} }&{}\\{}&{\mathbf {U} }\\\end{array}}\right]\left[{\begin{array}{*{20}c}{{\mathbf {L} }_{SS}}&{{\mathbf {L} }_{SR}}\\{{\mathbf {L} }_{RS}}&{{\mathbf {L} }_{RR}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{{\mathbf {P} }^{-1}}&{}\\{}&{\mathbf {U} }\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf {i} }_{abc}}\\{{\mathbf {i} }_{fDQ}}\\\end{array}}\right]}
[
Ψ
d
q
0
Ψ
f
D
Q
]
=
[
P
L
S
S
P
−
1
P
L
S
R
L
R
S
P
−
1
L
R
R
]
[
−
i
d
q
0
i
f
D
Q
]
{\displaystyle \left[{\begin{array}{*{20}c}{{\mathbf {\Psi } }_{dq0}}\\{{\mathbf {\Psi } }_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf {PL} }_{SS}{\mathbf {P} }^{-1}}&{{\mathbf {PL} }_{SR}}\\{{\mathbf {L} }_{RS}{\mathbf {P} }^{-1}}&{{\mathbf {L} }_{RR}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf {i} }_{dq0}}\\{{\mathbf {i} }_{fDQ}}\\\end{array}}\right]}
其中
P
L
S
S
P
−
1
=
[
L
d
L
q
L
0
]
≜
L
d
q
0
{\displaystyle {\mathbf {PL} }_{SS}{\mathbf {P} }^{-1}=\left[{\begin{array}{*{20}c}{L_{d}}&{}&{}\\{}&{L_{q}}&{}\\{}&{}&{L_{0}}\\\end{array}}\right]\triangleq {\mathbf {L} }_{dq0}}
。
① 轉換後的電感係數都變為常數,可以假想dd繞組,qq繞組是固定在轉子上的,相對轉子靜止。
② 派克轉換陣對定子自感矩陣
L
S
S
{\displaystyle {\mathbf {L} }_{SS}}
起到了對角化的作用,並消去了其中的角度變數。
L
d
,
L
q
,
L
0
{\displaystyle {L_{d}},{L_{q}},{L_{0}}}
為其特徵根。
③ 轉換後定子和轉子間的互感係數不對稱,這是由於派克轉換的矩陣不是正交矩陣 。
④
L
d
{\displaystyle {L_{d}}}
為直軸同步電感係數,其值相當於當勵磁繞組開路,定子合成磁勢產生單純直軸磁場時,任意一相定子繞組的自感係數。
電壓方程式:
[
U
a
b
c
U
f
D
Q
]
=
[
r
S
r
R
]
[
−
i
a
b
c
i
f
D
Q
]
+
[
Ψ
˙
a
b
c
Ψ
˙
f
D
Q
]
{\displaystyle \left[{\begin{array}{*{20}c}{{\mathbf {U} }_{abc}}\\{{\mathbf {U} }_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf {r} }_{S}}&{}\\{}&{{\mathbf {r} }_{R}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf {i} }_{abc}}\\{{\mathbf {i} }_{fDQ}}\\\end{array}}\right]+\left[{\begin{array}{*{20}c}{{\mathbf {\dot {\Psi }} }_{abc}}\\{{\mathbf {\dot {\Psi }} }_{fDQ}}\\\end{array}}\right]}
現對等式兩邊同時左乘
[
P
U
]
{\displaystyle \left[{\begin{array}{*{20}c}{\mathbf {P} }&{}\\{}&{\mathbf {U} }\\\end{array}}\right]}
,其中
U
{\displaystyle {\mathbf {U} }}
為三階單位矩陣 。方程式化為:
[
U
d
q
0
U
f
D
Q
]
=
[
r
S
r
R
]
[
−
i
d
q
0
i
f
D
Q
]
+
[
P
Ψ
˙
a
b
c
Ψ
˙
f
D
Q
]
{\displaystyle \left[{\begin{array}{*{20}c}{{\mathbf {U} }_{dq0}}\\{{\mathbf {U} }_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf {r} }_{S}}&{}\\{}&{{\mathbf {r} }_{R}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf {i} }_{dq0}}\\{{\mathbf {i} }_{fDQ}}\\\end{array}}\right]+\left[{\begin{array}{*{20}c}{{\mathbf {P{\dot {\Psi }}} }_{abc}}\\{{\mathbf {\dot {\Psi }} }_{fDQ}}\\\end{array}}\right]}
由
Ψ
d
q
0
=
P
Ψ
a
b
c
{\displaystyle {\mathbf {\Psi } }_{dq0}={\mathbf {P\Psi } }_{abc}}
,
對兩邊求導,得
Ψ
˙
d
q
0
=
P
˙
Ψ
a
b
c
+
P
Ψ
˙
a
b
c
{\displaystyle {\mathbf {\dot {\Psi }} }_{dq0}={\mathbf {{\dot {P}}\Psi } }_{abc}+{\mathbf {P{\dot {\Psi }}} }_{abc}}
,
所以
P
Ψ
˙
a
b
c
=
Ψ
˙
d
q
0
−
P
˙
Ψ
a
b
c
=
Ψ
˙
d
q
0
−
P
˙
P
−
1
Ψ
d
q
0
{\displaystyle {\mathbf {P{\dot {\Psi }}} }_{abc}={\mathbf {\dot {\Psi }} }_{dq0}-{\mathbf {{\dot {P}}\Psi } }_{abc}={\mathbf {\dot {\Psi }} }_{dq0}-{\mathbf {{\dot {P}}P} }^{-1}{\mathbf {\Psi } }_{dq0}}
其中
P
˙
P
−
1
=
[
ω
−
ω
]
{\displaystyle {\mathbf {{\dot {P}}P} }^{-1}=\left[{\begin{array}{*{20}c}{}&\omega &{}\\{-\omega }&{}&{}\\{}&{}&{}\\\end{array}}\right]}
,令
S
=
P
˙
P
−
1
Ψ
d
q
0
=
[
ω
−
ω
]
[
Φ
d
Φ
q
Φ
0
]
=
[
ω
Ψ
q
−
ω
Ψ
d
]
{\displaystyle {\mathbf {S} }={\mathbf {{\dot {P}}P} }^{-1}{\mathbf {\Psi } }_{dq0}=\left[{\begin{array}{*{20}c}{}&\omega &{}\\{-\omega }&{}&{}\\{}&{}&{}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{\Phi _{d}}\\{\Phi _{q}}\\{\Phi _{0}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{\omega \Psi _{q}}\\{-\omega \Psi _{d}}\\{}\\\end{array}}\right]}
於是有
[
U
d
q
0
U
f
D
Q
]
=
[
r
S
r
R
]
[
−
i
d
q
0
i
f
D
Q
]
+
[
Ψ
˙
d
q
0
Ψ
˙
f
D
Q
]
−
[
S
]
{\displaystyle \left[{\begin{array}{*{20}c}{{\mathbf {U} }_{dq0}}\\{{\mathbf {U} }_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf {r} }_{S}}&{}\\{}&{{\mathbf {r} }_{R}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf {i} }_{dq0}}\\{{\mathbf {i} }_{fDQ}}\\\end{array}}\right]+\left[{\begin{array}{*{20}c}{{\mathbf {\dot {\Psi }} }_{dq0}}\\{{\mathbf {\dot {\Psi }} }_{fDQ}}\\\end{array}}\right]-\left[{\begin{array}{*{20}c}{\mathbf {S} }\\{}\\\end{array}}\right]}
上式右邊第一項為繞組電阻的壓降,第二項為變壓器電勢,第三項為發電機電勢或旋轉電勢。
^ 定子電感矩陣
L
S
S
=
[
L
a
a
M
a
b
M
a
c
M
b
a
L
b
b
M
b
c
M
c
a
M
c
b
L
c
c
]
{\displaystyle {\mathbf {L} }_{SS}=\left[{\begin{array}{*{20}c}{L_{aa}}&{M_{ab}}&{M_{ac}}\\{M_{ba}}&{L_{bb}}&{M_{bc}}\\{M_{ca}}&{M_{cb}}&{L_{cc}}\\\end{array}}\right]}
,
其中
L
a
a
=
l
0
+
l
2
cos
(
2
θ
)
{\displaystyle L_{aa}=l_{0}+l_{2}\cos \left(2\theta \right)}
L
b
b
=
l
0
+
l
2
cos
2
(
θ
−
120
∘
)
{\displaystyle L_{bb}=l_{0}+l_{2}\cos 2\left({\theta -120^{\circ }}\right)}
L
c
c
=
l
0
+
l
2
cos
2
(
θ
+
120
∘
)
{\displaystyle L_{cc}=l_{0}+l_{2}\cos 2\left({\theta +120^{\circ }}\right)}
M
a
b
=
M
b
a
=
−
m
0
−
m
2
cos
2
(
θ
+
30
∘
)
{\displaystyle M_{ab}=M_{ba}=-m_{0}-m_{2}\cos 2\left({\theta +30^{\circ }}\right)}
M
b
c
=
M
c
b
=
−
m
0
−
m
2
cos
2
(
θ
−
90
∘
)
{\displaystyle M_{bc}=M_{cb}=-m_{0}-m_{2}\cos 2\left({\theta -90^{\circ }}\right)}
M
c
a
=
M
a
c
=
−
m
0
−
m
2
cos
2
(
θ
+
150
∘
)
{\displaystyle M_{ca}=M_{ac}=-m_{0}-m_{2}\cos 2\left({\theta +150^{\circ }}\right)}