跳至內容
主選單
主選單
移至側邊欄
隱藏
導覽
首頁
分類索引
特色內容
新聞動態
近期變更
隨機條目
說明
說明
維基社群
方針與指引
互助客棧
知識問答
字詞轉換
IRC即時聊天
聯絡我們
關於維基百科
特殊頁面
搜尋
搜尋
外觀
資助維基百科
建立帳號
登入
個人工具
資助維基百科
建立帳號
登入
用於已登出編輯者的頁面
了解更多
貢獻
討論
目次
移至側邊欄
隱藏
序言
1
例子
2
備註
3
參考資料
切換目次
放縮法
新增語言
新增連結
條目
討論
臺灣正體
不转换
简体
繁體
大陆简体
香港繁體
澳門繁體
大马简体
新加坡简体
臺灣正體
閱讀
編輯
檢視歷史
工具
工具
移至側邊欄
隱藏
操作
閱讀
編輯
檢視歷史
一般
連結至此的頁面
相關變更
上傳檔案
固定連結
頁面資訊
引用此頁面
取得短網址
下載QR碼
列印/匯出
下載為PDF
可列印版
其他專案
維基數據項目
外觀
移至側邊欄
隱藏
維基百科,自由的百科全書
本條目存在以下問題
,請協助
改善本條目
或在
討論頁
針對議題發表看法。
此條目
包含過多
行話或專業術語
,可能需要簡化或提出進一步解釋。
(
2014年7月16日
)
請在
討論頁
中發表對於本議題的看法,並移除或解釋本條目中的行話。
此條目
需要
編修
,以確保文法、
用詞、語氣
、
格式
、
標點
等使用恰當。
(
2014年7月16日
)
請按照
校對指引
,幫助
編輯
這個條目。(
幫助
、
討論
)
放縮法
是通過捨去或添加一些項來構造
不等式
的一種方法。
[
參 1
]
例子
[
編輯
]
求證
log
2
3
+
log
3
2
<
2
+
1
{\displaystyle {\sqrt {\log _{2}3}}+{\sqrt {\log _{3}2}}<{\sqrt {2}}+1}
[
注 1
]
log
2
3
+
log
3
2
<
log
2
4
+
log
3
3
=
2
+
1
{\displaystyle {\sqrt {\log _{2}3}}+{\sqrt {\log _{3}2}}<{\sqrt {\log _{2}4}}+{\sqrt {\log _{3}3}}={\sqrt {2}}+1}
[
參 2
]
已知a,b,c,d為
正數
,求證
1
<
a
a
+
b
+
d
+
b
a
+
b
+
c
+
c
b
+
c
+
d
+
d
a
+
c
+
d
<
2
{\displaystyle 1<{\frac {a}{a+b+d}}+{\frac {b}{a+b+c}}+{\frac {c}{b+c+d}}+{\frac {d}{a+c+d}}<2}
a
a
+
b
+
d
+
b
a
+
b
+
c
+
c
b
+
c
+
d
+
d
a
+
c
+
d
>
a
a
+
b
+
c
+
d
+
b
a
+
b
+
c
+
d
+
c
a
+
b
+
c
+
d
+
d
a
+
b
+
c
+
d
=
1
{\displaystyle {\frac {a}{a+b+d}}+{\frac {b}{a+b+c}}+{\frac {c}{b+c+d}}+{\frac {d}{a+c+d}}>{\frac {a}{a+b+c+d}}+{\frac {b}{a+b+c+d}}+{\frac {c}{a+b+c+d}}+{\frac {d}{a+b+c+d}}=1}
a
a
+
b
+
d
+
b
a
+
b
+
c
+
c
b
+
c
+
d
+
d
a
+
c
+
d
<
a
a
+
b
+
b
a
+
b
+
c
c
+
d
+
d
c
+
d
=
2
{\displaystyle {\frac {a}{a+b+d}}+{\frac {b}{a+b+c}}+{\frac {c}{b+c+d}}+{\frac {d}{a+c+d}}<{\frac {a}{a+b}}+{\frac {b}{a+b}}+{\frac {c}{c+d}}+{\frac {d}{c+d}}=2}
[
參 3
]
求證
∑
k
=
1
n
1
k
2
<
2
−
1
n
{\displaystyle \sum _{k=1}^{n}{\frac {1}{k^{2}}}<2-{\frac {1}{n}}}
∑
k
=
1
n
1
k
2
<
1
+
∑
k
=
2
n
1
k
(
k
−
1
)
=
1
+
∑
k
=
2
n
1
k
−
1
−
1
k
=
2
−
1
n
{\displaystyle \sum _{k=1}^{n}{\frac {1}{k^{2}}}<1+\sum _{k=2}^{n}{\frac {1}{k(k-1)}}=1+\sum _{k=2}^{n}{\frac {1}{k-1}}-{\frac {1}{k}}=2-{\frac {1}{n}}}
[
注 2
]
[
參 2
]
設
n
∈
N
+
{\displaystyle n\in N^{+}}
,求證
n
(
n
+
1
)
2
<
∑
k
=
1
n
k
(
k
+
1
)
<
(
n
+
1
)
2
2
{\displaystyle {\frac {n(n+1)}{2}}<\sum _{k=1}^{n}{\sqrt {k(k+1)}}<{\frac {(n+1)^{2}}{2}}}
k
=
k
2
<
k
(
k
+
1
)
<
k
2
+
k
+
1
4
=
k
+
1
2
{\displaystyle k={\sqrt {k^{2}}}<{\sqrt {k(k+1)}}<{\sqrt {k^{2}+k+{\frac {1}{4}}}}=k+{\frac {1}{2}}}
n
(
n
+
1
)
2
=
∑
k
=
1
n
k
<
∑
k
=
1
n
k
(
k
+
1
)
<
∑
k
=
1
n
(
k
+
1
2
)
=
n
2
+
2
n
2
<
(
n
+
1
)
2
2
{\displaystyle {\frac {n(n+1)}{2}}=\sum _{k=1}^{n}k<\sum _{k=1}^{n}{\sqrt {k(k+1)}}<\sum _{k=1}^{n}(k+{\frac {1}{2}})={\frac {n^{2}+2n}{2}}<{\frac {(n+1)^{2}}{2}}}
[
注 3
]
[
參 3
]
設a,b,c為
直角三角形
的三邊,c為
斜邊
,求證:
a
n
+
b
n
<
c
n
(
n
>
2
)
{\displaystyle a^{n}+b^{n}<c^{n}(n>2)}
a
n
+
b
n
=
a
2
a
n
−
2
+
b
2
b
n
−
2
<
a
2
c
n
−
2
+
b
2
c
n
−
2
=
c
n
(
n
>
2
)
{\displaystyle a^{n}+b^{n}=a^{2}a^{n-2}+b^{2}b^{n-2}<a^{2}c^{n-2}+b^{2}c^{n-2}=c^{n}(n>2)}
[
注 4
]
[
參 2
]
備註
[
編輯
]
^
log為
對數
函數
^
這裡用了
裂項和
的求和方法
^
這裡用了
等冪求和
的求和方法
^
這裡用了
勾股定理
參考資料
[
編輯
]
^
用放缩法证明不等式
. (
原始內容
存檔於2014-07-26).
^
2.0
2.1
2.2
董衛平.
说说放缩法
. 數學大世界(高中). 2011, (2)
[
2015-09-20
]
. (原始內容
存檔
於2016-03-04).
^
3.0
3.1
例谈不等式证明的十种常用方法
.
[
2014-07-16
]
. (原始內容
存檔
於2014-07-20).
分類
:
不等式
隱藏分類:
自2014年7月包含過多行話或專業術語的條目
自2014年7月需要校對的頁面
含有多個問題的條目
搜尋
搜尋
切換目次
放縮法
新增語言
新增話題