跳转到内容

亚砜

本页使用了标题或全文手工转换
维基百科,自由的百科全书
亚硫酰基

亚砜是含有亚硫酰基(>S=O)官能团的一类有机化合物。常见的亚砜有溶剂二甲基亚砜蒜氨酸等。[1]

性质

[编辑]

亚砜的通式为R-S(=O)-R',其中R和R'是有机基团。亚砜中之间的键介乎于配位键和带极性的双键之间。[2]亚砜中的成键与氧化叔膦(R3P=O)类似,由于电负性差异,S=O键带极性,其中硫显正价,氧显负价,共振式如下:

亚砜

硫原子为四面体结构,有一对孤对电子,类似于sp3杂化的碳原子。当硫所连接的两个基团不相同时,就会产生手性,比如甲基苯基亚砜

四面体结构

有时构型转换所需的能量相当高,室温下的外消旋速率很慢,以至于对映体相对稳定。有些手性的亚砜在医药中有应用,比如埃索美拉唑阿莫达非。对于烯丙基苄基亚砜,构型转换的能垒比较低。[3]此外,亚砜也被用作手性辅助剂[4]

制备

[编辑]

亚砜可由硫醚过氧化氢高碘酸钠[5]等氧化剂氧化得到。

很多有手性的亚砜可从非手性的硫醚为原料以不对称催化氧化反应进行合成[6],例如以[7]、或过渡金属配体(如Sharpless不对称环氧化试剂的变体[8][9][10]配合物等)作催化剂。例如,常见药物埃索美拉唑合成的最后一步也涉及到如此的不对称氧化[11]

除了以上提及的氧化反应,有机锂试剂格氏试剂与DABSO(DABCO-双(二氧化硫)加合物)和TMS-Cl反应,通过亚磺酸盐中间体,能够实现亚砜的一锅不对称合成[12]

芳基亚磺酰卤和二芳基亚砜可以通过芳烃氯化亚砜路易斯酸催化剂(如三氯化铋三氟甲磺酸铋高氯酸锂高氯酸钠)反应制备而成。[13][14]

反应

[编辑]

氧化还原

[编辑]

亚砜中硫的氧化态为0,处于硫醚(-2)和(+2)之间。因此氧化硫醚时,依次会得到亚砜、砜。[15]例如氧化二甲基硫醚时可以得到二甲基亚砜二甲基砜

酸碱反应

[编辑]

亚砜可由强碱(如氢化钠去质子化[16]

普梅雷尔重排反应

[编辑]

亚砜可以参与普梅雷尔重排反应。亚砜首先被乙酸酐O-烷基化,然后被去质子化,乙酸根离去再进攻,生成重排产物。[17]

反应涉及到亲核体硫𬭩离子中间体的进攻,因此可以成为有机合成的其中一个有力的方法。[18]例如,这反应应用于(-)-毒扁豆碱不对称合成[19]

σ迁移反应

[编辑]

烯丙型亚砜可以参与Mislow–Evans重排反应,生成烯丙醇,此反应是[2,3]-σ迁移反应的一种。[20]这反应应用于天然产物pyrenolide D[21]前列腺素E2[22]的合成。反应通式如下:

反应机理如下图所示[23]

烷基化

[编辑]

亚砜中硫原子具有亲核性,可以与碘甲烷亲电体发生双分子亲核取代,接着去质子化生成氧硫叶立德[24][25]氧硫叶立德能参与约翰逊–科里–柴可夫斯基反应。由二甲亚砜所产生的氧硫叶立德(二甲基氧代亚甲基硫叶立德,Dimethyloxosulfonium methylide)称为Corey-Chaykovsky试剂。[26]

二甲基氧代亚甲基硫叶立德

若底物同时有碳-碳和碳-氧双键,此叶立德优先与碳-碳双键反应生成环氧化合物而非环丙烷[27]

其他

[编辑]

亚砜可以在加热条件下发生Ei消除反应,生成相对应的烯烃次磺酸[28][29]

CH3S(O)CH2CH2R → CH3SOH + CH2=CHR

次磺酸为强抗氧化剂,然而缺乏长期稳定性。[30]

很多亚砜(如DMSO)都是很好的配体。现有很多种已知的过渡金属亚砜配合物[31][32],如二氯化四(二甲基亚砜)合钌(II)。亚砜可以在氧原子或硫原子上与金属成键[33],而前者比较常见[34]。有研究表示数种金属亚砜配合物有催化性质。[35]

二甲基亚砜(简称DMSO)可用于许多氧化反应[36],例如Pfitzner-Moffatt氧化反应(与碳二亚胺二环己基碳二亚胺(DCC)[37][38])和斯文氧化反应(与三乙胺草酰氯[39][40][41])。

Pfitzner-Moffatt氧化反应
斯文氧化反应

参见

[编辑]

参考资料

[编辑]
  1. ^ Patai S, Rappoport Z (编). Syntheses of Sulphones, Sulphoxides and Cyclic Sulphides. PATai's Chemistry of Functional Groups. John Wiley & Sons. 1995. ISBN 9780470666357. doi:10.1002/9780470666357. 
  2. ^ Cunningham TP, Cooper DL, Gerratt J, Karadakov PB, Raimondi M. Chemical bonding in oxofluorides of hypercoordinate sulfur. Journal of the Chemical Society, Faraday Transactions. 1997, 93 (13): 2247–2254. doi:10.1039/A700708F. 
  3. ^ Fernández I, Khiar N. Recent developments in the synthesis and utilization of chiral sulfoxides. Chemical Reviews. September 2003, 103 (9): 3651–705. PMID 12964880. doi:10.1021/cr990372u. 
  4. ^ Gama, Ángeles; Flores-López, Lucía Z.; Aguirre, Gerardo; Parra-Hake, Miguel; Hellberg, Lars H.; Somanathan, Ratnasamy. Ramsden, Christopher A. , 编. Oxidation of sulfides to chiral sulfoxides using Schiff base-vanadium (IV) complexes. Arkivoc. 2003-09-09, 2003 (11): 4–15 [2022-03-05]. ISSN 1551-7012. doi:10.3998/ark.5550190.0004.b02. (原始内容存档于2022-03-05) (英语). 
  5. ^ Johnson CR, Keiser JE. Methyl Phenyl Sulfoxide. Org. Syntheses. 1966, 46: 78. doi:10.15227/orgsyn.046.0078. 
  6. ^ Kagan HB, Chellappan SK, Lattanzi A. (R)-(+)-Phenyl methyl sulfoxide. E-EROS Encyclopedia of Reagents for Organic Synthesis. 2015. ISBN 978-0471936237. doi:10.1002/047084289X.rn00456. 
  7. ^ Holland, Herbert Leslie. Chiral Sulfoxidation by Biotransformation of Organic Sulfides. Chemical Reviews. 1988, 88 (3): 473–485. doi:10.1021/cr00085a002. 
  8. ^ Pitchen, P.; Duñach, E.; Deshmukh, M.N.; Kagan, H.B. An Efficient Asymmetric Oxidation of Sulfides to Sulfoxides. Journal of the American Chemical Society. 1984, 106 (26): 8188–8193 [13/7/2025]. doi:10.1021/ja00338a030. 
  9. ^ Dai, Wen; Li, Jun; Chen, Bo; Li, Guosong; Lv, Ying; Wang, Liane; Gao, Shuang. Asymmetric Oxidation Catalysis by a Porphyrin-Inspired Manganese Complex: Highly Enantioselective Sulfoxidation with a Wide Substrate Scope. Organic Letter. 2013, 15 (22): 5658–5661 [13/7/2025]. doi:10.1021/ol402612x. 
  10. ^ O’Mahony, G. E.; Ford, A.; Maguire, A.R. Copper-Catalyzed Asymmetric Oxidation of Sulfides. Copper-Catalyzed Asymmetric Oxidation of Sulfides. 2012, 77 (7): 3288–3296 [13/7/2025]. doi:10.1021/jo2026178. 
  11. ^ Cotton, Hanna; Elebring, Thomas; Larsson, Magnus; Li, Lanna; Sörensen, Henrik; von Unge, Sverker. Asymmetric synthesis of esomeprazole. Tetrahedron: Asymmetry. September 2000, 11 (18): 3819–3825. doi:10.1016/S0957-4166(00)00352-9. 
  12. ^ Lenstra, Danny C.; Vedovato, Vincent; Flegeau, Emmanuel Ferrer; Maydom, Jonathan; Willis, Michael C. One-Pot Sulfoxide Synthesis Exploiting a Sulfinyl-Dication Equivalent Generated from a DABSO/Trimethylsilyl Chloride Sequence. Organic Letters. 2016, 18 (9): 2086–2089 [17/7/2025]. doi:10.1021/acs.orglett.6b00712. 
  13. ^ Peyronneau M, Roques N, Mazières S, Le Roux C. Catalytic Lewis Acid Activation of Thionyl Chloride: Application to the Synthesis of ArylSulfinyl Chlorides Catalyzed by Bismuth(III) Salts. Synlett. 2003, (5): 0631–0634. doi:10.1055/s-2003-38358. 
  14. ^ Bandgar BP, Makone SS. Lithium/Sodium Perchlorate Catalyzed Synthesis of Symmetrical Diaryl Sulfoxides. Synth. Commun. 2004, 34 (4): 743–750. S2CID 96348273. doi:10.1081/SCC-120027723. 
  15. ^ Clayden, Jonathan; Greeves, Nick; Warren, Stuart. Organic Chemistry Second. Oxford: OUP. 2012. ISBN 978-0-19-927029-3. 
  16. ^ Iwai, I.; Ide, J. "2,3-Diphenyl-1,3-Butadiene" Organic Syntheses, Collected Volume 6, p.531 (1988). http://www.orgsyn.org/orgsyn/orgsyn/prepContent.asp?prep=CV6P0531.pdf [永久失效链接].
  17. ^ Bur, Scott K.; Padwa, Albert. The Pummerer Reaction:  Methodology and Strategy for the Synthesis of Heterocyclic Compounds. Chemical Reviews. 2004, 104 (5): 2401–2432 [13/7/2025]. doi:10.1021/cr020090l. 
  18. ^ Bur, Scott K.; Padwa, Albert. The Pummerer Reaction:  Methodology and Strategy for the Synthesis of Heterocyclic Compounds. Chemical Reviews. 2004, 104 (5): 2401–2432 [13/7/2025]. doi:10.1021/cr020090l. 
  19. ^ Marino, J.P.; Bogdan, S.; Kimura, K. The enantioselective synthesis of (-)-physostigmine via chiral sulfoxides. Journal of the American Chemical Society. 1992, 114 (14): 5566-5572 [13/7/2025]. doi:10.1021/ja00040a013. 
  20. ^ Li, Jie Jack. Name Reaction有限度免费查阅,超限则需付费订阅. Springer Publishing. 2006: 388. ISBN 978-3-540-30030-4. doi:10.1007/3-540-30031-7_174. 
  21. ^ Minisci, F., Bertini, F., Galli, R., Quilico, A. Alkylation of pyridine derivatives. It 906418, 1972 (Montedison S.p.A., Italy). 14 pp
  22. ^ Kürti, László; Czakó, Barbara. Strategic applications of named reactions in Organic Synthesis有限度免费查阅,超限则需付费订阅. Elsevier. 2005: 292. ISBN 9780124297852. 
  23. ^ Kürti, László; Czakó, Barbara. Strategic applications of named reactions in Organic Synthesis有限度免费查阅,超限则需付费订阅. Elsevier. 2005: 292. ISBN 9780124297852. 
  24. ^ 邢其毅; 裴坚; 裴伟伟; 徐瑞秋. 基礎有機化學.硫葉立德的反應 第四版. : p.647 [2021-07-27]. ISBN 9787301272121. 
  25. ^ Clayden, Jonathan; Greeves, Nick; Warren, Stuart. Organic Chemistry Second. Oxford: OUP. 2012. ISBN 978-0-19-927029-3. 
  26. ^ Corey, E.J.; Chaykovsky, M. Dimethyloxosulfonium Methylide ((CH3)2SOCH2) and Dimethylsulfonium Methylide ((CH3)2SCH2). Formation and Application to Organic Synthesis. J. Am. Chem. Soc. 1965, 87 (6): 1353–1364 [2012-08-22]. doi:10.1021/ja01084a034. (原始内容存档于2020-09-25). 
  27. ^ Clayden, Jonathan; Greeves, Nick; Warren, Stuart. Organic Chemistry Second. Oxford: OUP. 2012. ISBN 978-0-19-927029-3. 
  28. ^ Michael Carrasco, Robert J. Jones, Scott Kamel, H. Rapoport, Thien Truong. N-(Benzyloxycarbonyl)-L-Vinylglycine Methyl Ester. Organic Syntheses. 1992, 70: 29. doi:10.15227/orgsyn.070.0029. 
  29. ^ Cubbage, Jerry W.; Guo, Yushen; McCulla, Ryan D.; Jenks, William S. Thermolysis of Alkyl Sulfoxides and Derivatives: A Comparison of Experiment and Theory. The Journal of Organic Chemistry. 1 December 2001, 66 (26): 8722–8736. PMID 11749600. doi:10.1021/jo0160625. 
  30. ^ Koelewijn, P.; Berger, H. Mechanism of the antioxidant action of dialkyl sulfoxides. Recueil des Travaux Chimiques des Pays-Bas. 2 September 2010, 91 (11): 1275–1286. doi:10.1002/recl.19720911102. 
  31. ^ Calligaris, Mario. Structure and Bonding in Metal Sulfoxide Complexes: An Update. Coordination Chemistry Reviews. 2004, 248 (3–4): 351–375. doi:10.1016/j.ccr.2004.02.005. 
  32. ^ Calligaris, M. Structure and Bonding in Metal Sulfoxide Complexes. Coordination Chemistry Reviews. 1996, 153: 83–154. doi:10.1016/0010-8545(95)01193-5. 
  33. ^ Alessio, Enzo. Synthesis and Reactivity of Ru-, Os-, Rh-, and Ir-Halide−Sulfoxide Complexes. Chemical Reviews. 2004, 104 (9): 4203–4242. PMID 15352790. doi:10.1021/cr0307291. 
  34. ^ Calligaris M. Structure and Bonding in Metal Sulfoxide Complexes: an Update. Coordination Chemistry Reviews. 2004, 248 (3–4): 351–375. doi:10.1016/j.ccr.2004.02.005. 
  35. ^ Sipos, Gellért; Drinkel, Emma E.; Dorta, Reto. The Emergence of Sulfoxides as Efficient Ligands in Transition Metal Catalysis (PDF). Chemical Society Reviews. 2015, 44 (11): 3834–3860. PMID 25954773. doi:10.1039/C4CS00524D. 
  36. ^ Epstein W.W., Sweat F.W. Dimethyl Sulfoxide Oxidations. Chemical Reviews. 1967, 67: 247–260. doi:10.1021/cr60247a001. 
  37. ^ Pfitzner, K. E.; Moffatt, J. G. A New and Selective Oxidation of Alcohols. J. Am. Chem. Soc. 1963, 85: 3027. doi:10.1021/ja00902a036. 
  38. ^ J. G. Moffatt, “Sulfoxide-Carbodiimide and Related Oxidations” in Oxidation vol. 2, R. L. Augustine, D. J. Trecker, Eds. (Dekker, New York, 1971) pp 1-64.
  39. ^ Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651. (doi:10.1016/0040-4020(78)80197-5)
  40. ^ Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org. Chem. 1978, 43, 2480–2482. (doi:10.1021/jo00406a041)
  41. ^ Mancuso, A. J.; Brownfain, D. S.; Swern, D. J. Org. Chem. 1979, 44, 4148. (doi:10.1021/jo01337a028)