使用者:Qiongjx/sandbox
土地覆蓋圖的精度評估是指通過對比分類結果與參考數據,評估基於遙感或地理空間數據所生成土地覆蓋分類圖的可靠性和質量。這類地圖廣泛應用於環境監測、城市規劃及氣候變化研究,因此其準確性對於科學分析和政策制定至關重要。[1][2][3][4][5]

精度評估通常依賴於地面調查數據或高分辨率影像所提供的「真值」。它們被用於對比分類結果並識別分類誤差。評估通常利用混淆矩陣來計算包括總體精度、用戶精度、生產者精度,以及 Kappa 係數等指標。[6]
隨着全球土地覆蓋產品的不斷發布,近年來也出現了跨產品的比較評估方法,用以揭示數據間的一致性、差異性與不確定性。[7]
參考數據
[編輯]參考數據(也稱為基準真相或者驗證數據)對於評估土地覆蓋圖的準確性至關重要。這些數據是與土地覆蓋標籤進行比較的基準,其質量直接影響評估的有效性。[5]
參考數據來源
[編輯]精度評估所依賴的參考數據通常包括以下幾類:[8]
- 實地調查數據:通過 GPS 或其他設備在地面採集的點位數據。它們具有較高的可信度,但採集成本較高,覆蓋範圍有限。
- 高分辨率遙感影像:如 Google Earth、Sentinel-2、Landsat 等。這些影像經過專家視覺解譯後,可作為有效的參考數據源。
- 已有權威數據集:如政府部門發布的土地覆蓋調查數據、權威的地理空間數據庫等。如果它們具有良好的時間一致性和空間精度,也可用於驗證。
樣本設計與抽樣方法
[編輯]為了實現高效而具代表性的精度評估,需在研究區域內進行合理的樣本點抽樣。常用策略包括:[8][9]
- 簡單隨機抽樣:每個像元被抽中的概率相等。這種方法簡單,但採樣得到的稀有類別的樣本數可能不足。
- 分層隨機抽樣[9]:依據地類劃分分層後再進行隨機抽樣。它可以提升分類平衡性與精度估計的代表性。
- 系統抽樣[9]:基於規則網格進行採樣。可以確保空間分布均勻,但可能與地物空間格局產生偏差。
- 聚類抽樣[9]:以地理聚集單元為基礎,適用於大區域調查,可節省外業成本但增加估計誤差。
樣本大小選擇
[編輯]選擇合適的樣本大小是土地覆蓋圖驗證設計中的一個重要的步驟。確定樣本大小的兩種常見方法是:[8][10]
樣本解釋方法
[編輯]樣本點在評估中需被賦予真實地類標籤,通常有以下方式:[8]
- 人工解譯:專家基於高分辨率影像進行視覺判讀[12]。這種方式精度高但耗時耗力。
- 自動賦值:利用已有地圖或算法自動賦值,效率高但可能需人工覆核。[13]
- 眾包標註:通過平台(如 Geo-Wiki)進行公眾參與標註。這種方法可以滿足大數據要求,但需要控制數據的一致性。
精度指標
[編輯]有許多定量指標可以用來評估土地覆蓋圖的精度。這些指標通常基於混淆矩陣(英語:confusion matrix),用于衡量分類結果與參考標籤的一致性。[6]

總體精度(Overall accuracy,OA)
[編輯]總體精度是一個整體指標,它表示分類正確的樣本數占總樣本數的比例。[6]
有時,也會計算類別級別的精度指標。[14]
用戶精度(User's accuracy,UA)、生產者精度(Producer's accuracy,PA)和 F1 值
[編輯]用戶精度和生產者精度屬於類別指標。[6]
用戶精度指的是地圖上某一地類正確分類的比例(反映錯分誤差)。[6]
生產者精度則是地面某一地類被正確分類的概率(反映遺漏)。[6]
還可以分別對用戶精度和生產者精度進行平均,從而提供來自用戶和生產者的角度的分類性能。[15]
而 F1 值則是用戶精度與生產者精度的調和平均值,用以綜合考慮這兩類指標。[6]
Kappa係數
[編輯]Kappa 係數[16]是一種考慮隨機一致性的統計指標。它的值域為 -1 至 1,值越高代表一致性越強。Kappa 係數常見解釋標準如下: [17]
Kappa 值 | 一致性強度 |
---|---|
< 0 | 極差 |
0–0.20 | 輕微 |
0.21–0.40 | 一般 |
0.41–0.60 | 中等 |
0.61–0.80 | 明顯 |
0.81–1.0 | 極好 |
置信區間與不確定性
[編輯]由於精度指標往往是基於樣本的,因此存在統計不確定性。通常會結合標準誤差或置信區間,估計總體精度或各類精度指標的可靠範圍。這對於不同產品間的精度比較尤為重要。[18]
多產品對比評估
[編輯]除了評估單個土地覆蓋產品的精度外,許多研究[19][20][21]還會對多個土地覆蓋產品進行比較評估。這些產品通常在輸入數據、分類方案或分類算法上有所不同。因此,比較評估對於理解這些數據集的一致性、差異性、互補性和可用性尤為重要。[7][22] 比較評估通常採用以下方式進行:[7][22][23][24][25]
近年來,許多研究都比較了多個高分辨率土地覆蓋產品,例如歐洲空間局的WorldCover、Esir的Land Cover 和谷歌的 Dynamic World,以評估它們在不同區域和土地覆蓋類型中的相對精度和主題一致性。這些努力有助於用戶在為特定用途選擇產品時做出明智的選擇。[7][22]
參見
[編輯]參考文獻
[編輯]- ^ Sheykhmousa, Mohammadreza; Kerle, Norman; Kuffer, Monika; Ghaffarian, Saman. Post-Disaster Recovery Assessment with Machine Learning-Derived Land Cover and Land Use Information. Remote Sensing. 2019-05-17, 11 (10): 1174. ISSN 2072-4292. doi:10.3390/rs11101174.
- ^ Ghaffarian, Saman; Rezaie Farhadabad, Ali; Kerle, Norman. Post-Disaster Recovery Monitoring with Google Earth Engine. Applied Sciences. 2020-07-01, 10 (13): 4574. ISSN 2076-3417. doi:10.3390/app10134574.
- ^ Gaur, Srishti; Singh, Rajendra. A Comprehensive Review on Land Use/Land Cover (LULC) Change Modeling for Urban Development: Current Status and Future Prospects. Sustainability. 2023-01-04, 15 (2): 903. ISSN 2071-1050. doi:10.3390/su15020903.
- ^ Roy, Parth Sarathi; Ramachandran, Reshma M.; Paul, Oscar; Thakur, Praveen K.; Ravan, Shirish; Behera, Mukunda Dev; Sarangi, Chandan; Kanawade, Vijay P. Anthropogenic Land Use and Land Cover Changes—A Review on Its Environmental Consequences and Climate Change. Journal of the Indian Society of Remote Sensing. 2022-08-01, 50 (8): 1615–1640. ISSN 0974-3006. doi:10.1007/s12524-022-01569-w (英語).
- ^ 5.0 5.1 Foody, Giles M. Status of land cover classification accuracy assessment. Remote Sensing of Environment. 2002-04-01, 80 (1): 185–201. ISSN 0034-4257. doi:10.1016/S0034-4257(01)00295-4.
- ^ 6.0 6.1 6.2 6.3 6.4 6.5 6.6 Grandini, Margherita; Bagli, Enrico; Visani, Giorgio, Metrics for Multi-Class Classification: an Overview, arXiv, 2020-08-13 [2025-07-09], doi:10.48550/arXiv.2008.05756, arXiv:2008.05756
- ^ 7.0 7.1 7.2 7.3 Xu, Panpan; Tsendbazar, Nandin-Erdene; Herold, Martin; de Bruin, Sytze; Koopmans, Myke; Birch, Tanya; Carter, Sarah; Fritz, Steffen; Lesiv, Myroslava; Mazur, Elise; Pickens, Amy; Potapov, Peter; Stolle, Fred; Tyukavina, Alexandra; Van De Kerchove, Ruben. Comparative validation of recent 10 m-resolution global land cover maps. Remote Sensing of Environment. September 2024, 311: 114316. doi:10.1016/j.rse.2024.114316 (英語).
- ^ 8.0 8.1 8.2 8.3 Xu, Qiongjie; Yordanov, Vasil; Bruzzone, Lorenzo; Brovelli, Maria Antonia. High-Resolution Global Land Cover Maps and Their Assessment Strategies. ISPRS International Journal of Geo-Information. 2025-06-18, 14 (6): 235. ISSN 2220-9964. doi:10.3390/ijgi14060235 (英語).
- ^ 9.0 9.1 9.2 9.3 Stehman, Stephen V. Sampling designs for accuracy assessment of land cover. International Journal of Remote Sensing. 2009-09-23, 30 (20): 5243–5272. ISSN 0143-1161. doi:10.1080/01431160903131000.
- ^ 10.0 10.1 10.2 Cochran 1977 Sampling Techniques.
- ^ Olofsson, Pontus; Foody, Giles M.; Herold, Martin; Stehman, Stephen V.; Woodcock, Curtis E.; Wulder, Michael A. Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment. 2014-05-25, 148: 42–57. ISSN 0034-4257. doi:10.1016/j.rse.2014.02.015.
- ^ Brown, Christopher F.; Brumby, Steven P.; Guzder-Williams, Brookie; Birch, Tanya; Hyde, Samantha Brooks; Mazzariello, Joseph; Czerwinski, Wanda; Pasquarella, Valerie J.; Haertel, Robert; Ilyushchenko, Simon; Schwehr, Kurt; Weisse, Mikaela; Stolle, Fred; Hanson, Craig; Guinan, Oliver. Dynamic World, Near real-time global 10 m land use land cover mapping. Scientific Data. 2022-06-09, 9 (1). ISSN 2052-4463. PMC 9184477
. doi:10.1038/s41597-022-01307-4 (英語).
- ^ Friedl, Mark A.; Woodcock, Curtis E.; Olofsson, Pontus; Zhu, Zhe; Loveland, Tom; Stanimirova, Radost; Arevalo, Paulo; Bullock, Eric; Hu, Kai-Ting; Zhang, Yingtong; Turlej, Konrad; Tarrio, Katelyn; McAvoy, Kristina; Gorelick, Noel; Wang, Jonathan A. Medium Spatial Resolution Mapping of Global Land Cover and Land Cover Change Across Multiple Decades From Landsat. Frontiers in Remote Sensing. 2022-06-28, 3. ISSN 2673-6187. doi:10.3389/frsen.2022.894571 (English).
- ^ Stehman, Stephen V.; Foody, Giles M. Key issues in rigorous accuracy assessment of land cover products. Remote Sensing of Environment. 2019-09-15, 231: 111199. ISSN 0034-4257. doi:10.1016/j.rse.2019.05.018.
- ^ Liu, Canran; Frazier, Paul; Kumar, Lalit. Comparative assessment of the measures of thematic classification accuracy. Remote Sensing of Environment. 2007-04-30, 107 (4): 606–616. ISSN 0034-4257. doi:10.1016/j.rse.2006.10.010.
- ^ Cohen, Jacob. A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement. 1960-04-01, 20 (1): 37–46. ISSN 0013-1644. doi:10.1177/001316446002000104 (英語).
- ^ 17.0 17.1 Landis, J. Richard; Koch, Gary G. The Measurement of Observer Agreement for Categorical Data. Biometrics. 1977, 33 (1): 159–174. ISSN 0006-341X. doi:10.2307/2529310.
- ^ Olofsson, Pontus; Foody, Giles M.; Stehman, Stephen V.; Woodcock, Curtis E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sensing of Environment. 2013-02-15, 129: 122–131. ISSN 0034-4257. doi:10.1016/j.rse.2012.10.031.
- ^ Zhang, Xiao; Zhao, Tingting; Xu, Hong; Liu, Wendi; Wang, Jinqing; Chen, Xidong; Liu, Liangyun. GLC_FCS30D: the first global 30 m land-cover dynamics monitoring product with a fine classification system for the period from 1985 to 2022 generated using dense-time-series Landsat imagery and the continuous change-detection method. Earth System Science Data. 2024-03-15, 16 (3): 1353–1381. ISSN 1866-3508. doi:10.5194/essd-16-1353-2024 (English).
- ^ Bourgoin, Clement; Ameztoy, Iban; Verhegghen, Astrid; Desclée, Baudoin; Carboni, Silvia; Bastin, Jean-Francois; Beuchle, Rene; Brink, Andreas; Defourny, Pierre. Mapping global forest cover of the year 2020 to support the EU regulation on deforestation-free supply chains. Publications Office of the European Union. 2024. ISBN 978-92-68-13866-3. doi:10.2760/262532.
- ^ Zhang, Xiao; Liu, Liangyun; Zhao, Tingting; Gao, Yuan; Chen, Xidong; Mi, Jun. GISD30: global 30 m impervious-surface dynamic dataset from 1985 to 2020 using time-series Landsat imagery on the Google Earth Engine platform. Earth System Science Data. 2022-04-14, 14 (4): 1831–1856. ISSN 1866-3508. doi:10.5194/essd-14-1831-2022 (English).
- ^ 22.0 22.1 22.2 Venter, Zander S.; Barton, David N.; Chakraborty, Tirthankar; Simensen, Trond; Singh, Geethen. Global 10 m Land Use Land Cover Datasets: A Comparison of Dynamic World, World Cover and Esri Land Cover. Remote Sensing. 2022-08-21, 14 (16): 4101. ISSN 2072-4292. doi:10.3390/rs14164101 (英語).
- ^ 23.0 23.1 23.2 Zhang, Xiao; Liu, Liangyun; Zhao, Tingting; Chen, Xidong; Lin, Shangrong; Wang, Jinqing; Mi, Jun; Liu, Wendi. GWL_FCS30: a global 30 m wetland map with a fine classification system using multi-sourced and time-series remote sensing imagery in 2020. Earth System Science Data. 2023-01-17, 15 (1): 265–293. ISSN 1866-3508. doi:10.5194/essd-15-265-2023 (English).
- ^ 24.0 24.1 24.2 Yu, Le; Du, Zhenrong; Dong, Runmin; Zheng, Juepeng; Tu, Ying; Chen, Xin; Hao, Pengyu; Zhong, Bo; Peng, Dailiang; Zhao, Jiyao; Li, Xiyu; Yang, Jianyu; Fu, Haohuan; Yang, Guangwen; Gong, Peng. FROM-GLC Plus: toward near real-time and multi-resolution land cover mapping. GIScience & Remote Sensing. 2022-12-31, 59 (1): 1026–1047. ISSN 1548-1603. doi:10.1080/15481603.2022.2096184.
- ^ 25.0 25.1 25.2 Friedl, Mark A.; Woodcock, Curtis E.; Olofsson, Pontus; Zhu, Zhe; Loveland, Tom; Stanimirova, Radost; Arevalo, Paulo; Bullock, Eric; Hu, Kai-Ting; Zhang, Yingtong; Turlej, Konrad; Tarrio, Katelyn; McAvoy, Kristina; Gorelick, Noel; Wang, Jonathan A. Medium Spatial Resolution Mapping of Global Land Cover and Land Cover Change Across Multiple Decades From Landsat. Frontiers in Remote Sensing. 2022-06-28, 3. ISSN 2673-6187. doi:10.3389/frsen.2022.894571 (English).
- ^ Zhang, Xiao; Liu, Liangyun; Zhao, Tingting; Wang, Jinqing; Liu, Wendi; Chen, Xidong. Global annual wetland dataset at 30 m with a fine classification system from 2000 to 2022. Scientific Data. 2024-03-23, 11 (1): 310. ISSN 2052-4463. PMC 10960823
. doi:10.1038/s41597-024-03143-0 (英語).