数据包络分析
数据包络分析(英语:Data envelopment analysis,DEA)是运筹学和经济学中一种非参数化的评估生产前沿的方法。[1] 这一分析方法广泛应用于多个领域,包括国际银行业、经济可持续性研究、警务运营,以及物流管理。[2][3][4] DEA还被用于评估自然语言处理模型的性能,在机器学习领域也展现出诸多应用前景。[5][6][7]
简述
[编辑]数据包络分析(DEA)是一种实证测量决策单元生产效率(DMU)的方法。尽管起源于经济学的生产理论,但如今已广泛应用于运营管理的标杆评估。[8] 在标杆分析中,研究者选择一系列指标,对制造业和服务业的运营绩效进行比较。[1][9]:243–285
与必须预先设定生产或成本函数的参数化方法不同,非参数化方法仅根据可获得的数据比较可行的投入产出组合。[10] 作为最常用的非参数化方法之一,数据包络分析得名于其对数据集中高效决策单元的“包络”特性。在这一方法中,经验上最高效的决策单元构成了“最佳实践前沿”,其他所有决策单元都与之对标。
数据包络分析之所以广受欢迎,主要有三个原因:
- 假设条件相对较少
- 能够对多维度的投入和产出进行标杆比较
- 计算简便,可以通过线性规划方法直接求解效率比率
不同于传统方法,DEA并不追求构建严格的“生产前沿”,而是试图找出实践中最为高效的运营模式。[11]
历史
[编辑]DEA最早可追溯到1978年。在Farrell的研究基础上,[12] 查恩斯、库珀和罗德斯[1]运用线性规划,首次实证性地估算了生产技术前沿。在德国,类似方法此前已被用于估算研发及其他生产要素的边际生产率。此后,DEA迅速成为学术界研究的热点,大量专著和期刊论文涌现。
从最初的CCR模型(以创始人查恩斯、库珀、罗德斯命名)开始,[1] 学者们不断拓展DEA的应用。这些扩展包括多个方面:调整模型隐含假设、区分技术效率与配置效率[13]、引入输入输出的有限替代性[14]、考虑规模收益变化[15],以及开发更复杂的分析技术,如随机DEA[16]和交叉效率分析等。[17]
脚注
[编辑]- ^ 1.0 1.1 1.2 1.3 Charnes et al (1978)
- ^ Charnes et al (1995)
- ^ Emrouznejad et al (2016)
- ^ Thanassoulis (1995)
- ^ Koronakos and Sotiropoulos (2020)
- ^ Zhou et al (2022)
- ^ Guerrero et al (2022)
- ^ Mahmoudi et al (2021)
- ^ Sickles et al (2019)
- ^ Cooper et al (2007)
- ^ Cooper et al (2011)
- ^ Farrell (1957)
- ^ Fried et al (2008)
- ^ Cooper et al (2000)
- ^ Banker et al (1984)
- ^ Olesen (2016)
- ^ 引用错误:没有为名为
:2
的参考文献提供内容
参考文献
[编辑]- Charnes, Abraham; Cooper, William Wager; Rhodes, E. Measuring the Efficiency of Decision Making Units (PDF). European Journal of Operational Research. 1978, 2 (6): 429–444 [27 January 2022]. doi:10.1016/0377-2217(78)90138-8.
- Charnes, Abraham; Cooper, William; Lewin, Arie; Seiford, Lawrence. Data Envelopment Analysis: Theory, Methodology, and Applications. Springer Science & Business Media. 1995. ISBN 9780792394808.
- Mahmoudi, Amin; Abbasi, Mehdi; Deng, Xiaopeng. Evaluating the Performance of the Suppliers Using Hybrid DEA-OPA Model: A Sustainable Development Perspective. Group Decision and Negotiation. 2021, 31 (2): 335–362. ISSN 0926-2644. S2CID 254498857. doi:10.1007/s10726-021-09770-x.
- Banker, R. D.; Charnes, A.; Cooper, William Wager. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis (PDF). Management Science. September 1984, 30 (9): 1078–1092 [27 January 2022]. S2CID 51901687. doi:10.1287/mnsc.30.9.1078.
- Brockhoff K. On the Quantification of the Marginal Productivity of Industrial Research by Estimating a Production Function for a Single Firm. German Economic Review. 1970, 8: 202–229.
- Banker, R. D.; Charnes, A.; Cooper, William Wager. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis (PDF). Management Science. September 1984, 30 (9): 1078–1092 [27 January 2022]. S2CID 51901687. doi:10.1287/mnsc.30.9.1078.
- Cook, Wade D.; Hababou, Moez; Tuenter, Hans J. H. Multicomponent Efficiency Measurement and Shared Inputs in Data Envelopment Analysis: An Application to Sales and Service Performance in Bank Branches. Journal of Productivity Analysis. November 2000, 14 (3): 209–224. JSTOR 41781515. doi:10.1023/A:1026598803764.
- Cook, Wade D.; Tone, Kaoru; Zhu, Joe. Data envelopment analysis: Prior to choosing a model. Omega. April 2014, 44 (C): 1–4. doi:10.1016/j.omega.2013.09.004.
- Cooper, William Wager; Seiford, Lawrence; Zhu, Joe. A unified additive model approach for evaluating inefficiency and congestion with associated measures in DEA. Socio-Economic Planning Sciences. 2000, 34 (1): 1–25. doi:10.1016/S0038-0121(99)00010-5.
- Cooper, William Wager; Seiford, Lawrence; Zhu, Joe. A unified additive model approach for evaluating inefficiency and congestion with associated measures in DEA. Socio-Economic Planning Sciences. 2000, 34 (1): 1–25. doi:10.1016/S0038-0121(99)00010-5.
- Cooper, William Wager; Seiford, Lawrence M.; Tone, Kaoru. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software 2. Springer Publishing. 2007 (英语).
- Cooper, William Wager; Seiford, Lawrence M.; Zhu, Joe (编). Handbook on Data Envelopment Analysis. International Series in Operations Research & Management Science 164 2. Springer Publishing. 2011. ISBN 978-1441961501 (英语).
- Dyson, R. G.; Allen, R.; Camanho, A. S.; Podinovski, V. V.; Sarrico, C. S.; Shale, E. A. Pitfalls and protocols in DEA. European Journal of Operational Research. Data Envelopment Analysis. 2001-07-16, 132 (2): 245–259. doi:10.1016/S0377-2217(00)00149-1.
- Doyle, John; Green, Rodney. Efficiency and Cross-efficiency in DEA: Derivations, Meanings and Uses. Journal of the Operational Research Society. 1994, 45 (5): 567–578. ISSN 0160-5682. S2CID 122161456. doi:10.1057/jors.1994.84 (英语).
- Emrouznejad, Ali; Banker, Rajiv; Ray, Subhash; Chen, Lei. Recent Applications of Data Envelopment Analysis. Proceedings of the 14th International Conference on Data Envelopment Analysis. 2016.
- Farrell, Michael James. The Measurement of Productive Efficiency. Journal of the Royal Statistical Society. 1957, 120 (3): 253–290. JSTOR 2343100. doi:10.2307/2343100.
- Fried, Harold O.; Lovell, C. A. Knox; Schmidt, Shelton S. The Measurement of Productive Efficiency and Productivity Growth. Oxford University Press. 2008. ISBN 978-0-19-804050-7 (英语).
- Guerrero, Nadia; Aparicio, Juan; Valero-Carreras, Daniel. Combining data envelopment analysis and machine learning. Mathematics. 2022, 10 (6): 909. doi:10.3390/math10060909
.
- Lovell, C.A.L., & P. Schmidt (1988) "A Comparison of Alternative Approaches to the Measurement of Productive Efficiency, in Dogramaci, A., & R. Färe (eds.) Applications of Modern Production Theory: Efficiency and Productivity, Kluwer: Boston.
- Olesen, Ole B.; Petersen, Niels Christian. Stochastic Data Envelopment Analysis—A review. European Journal of Operational Research. 2016, 251 (1): 2–21. ISSN 0377-2217. doi:10.1016/j.ejor.2015.07.058 (英语).
- Ramanathan, R. An Introduction to Data Envelopment Analysis: A tool for Performance Measurement. N.Delhi: SAGE Publishing. 2003 (英语).
- Sexton, Thomas R. Data envelopment analysis: Critique and extension. New Directions for Program Evaluation. 1986, 1986 (32): 73–105. doi:10.1002/ev.1441.
- Sickles, Robin; Zelenyuk, Valentin. Measurement of Productivity and Efficiency - Theory and Practice (PDF). Cambridge University Press. 2019 [27 January 2022]. ISBN 978-1-107-68765-3 (英语).
- Thanassoulis, Emmanuel. Assessing police forces in England and Wales using data envelopment analysis. European Journal of Operational Research. 1995, 87 (3): 641–657. doi:10.1016/0377-2217(95)00236-7.
- Zhou, Zachary; Zachariah, Alisha; Conathan, Devin; Kline, Jeffery. Assessing Resource-Performance Trade-off of Natural Language Models using Data Envelopment Analysis. Proceedings of the 3rd Workshop on Evaluation and Comparison of NLP Systems (Association for Computational Linguistics). 2022: 11–20. arXiv:2211.01486
.
- Koronakos, Gregory; Sotiropoulos, Dionysios. A Neural Network approach for Non-parametric Performance Assessment. 2020 11th International Conference on Information, Intelligence, Systems and Applications (IISA. IEEE. 2020: 1–8. ISBN 978-1-6654-2228-4. S2CID 228097834. doi:10.1109/IISA50023.2020.9284346.