跳转到内容

User:Justin545/沙盒

维基百科,自由的百科全书

子頁面

[编辑]

NumBlk2相關

[编辑]
FMT='"`UNIQ--nowiki-00000000-QINU`"'; ID=foo; LBL=bar; UST=%Lnowiki%G{{=}} 5%Lnowiki%G'%L/nowiki%G%L/nowiki%G; SUB=<nowiki>{{=}} 5<nowiki>'</nowiki></nowiki>; EXP='"`UNIQ--nowiki-00000001-QINU`"'</nowiki>;✶

{{=}} 5<nowiki>'</nowiki>

FMT='"`UNIQ--nowiki-00000004-QINU`"'; ID=foo; LBL=bar; UST='"`UNIQ--nowiki-00000003-QINU`"'; SUB='"`UNIQ--nowiki-00000003-QINU`"'; EXP='"`UNIQ--nowiki-00000003-QINU`"';✶

=

FMT='"`UNIQ--nowiki-00000007-QINU`"'; ID=foo; LBL=bar; UST='"`UNIQ--nowiki-00000006-QINU`"'; SUB='"`UNIQ--nowiki-00000006-QINU`"'; EXP='"`UNIQ--nowiki-00000006-QINU`"';✶

{{=}}

FMT='"`UNIQ--nowiki-00000009-QINU`"'; ID=foo; LBL=bar; UST={{#tag:nowiki|{{=}}}}; SUB={{#tag:nowiki|{{=}}}}; EXP='"`UNIQ--nowiki-0000000A-QINU`"';✶

=

eeeeeeee

[编辑]
FMT='"`UNIQ--nowiki-00000010-QINU`"'; ID=math_'"`UNIQ--nowiki-0000000E-QINU`"'; LBL='"`UNIQ--nowiki-0000000E-QINU`"'; UST=[[#{{#invoke:decodeEncode|encode|s={{UnstripNoWiki|%i}}|charset=]}}|%l]]; SUB=[[#{{#invoke:decodeEncode|encode|s={{UnstripNoWiki|math_'"`UNIQ--nowiki-0000000E-QINU`"'}}|charset=]}}|'"`UNIQ--nowiki-0000000E-QINU`"']]; EXP=[[#math_x90&#93;&#93;" style=|'"`UNIQ--nowiki-0000000E-QINU`"']];✶
x90]]" style=
FMT='"`UNIQ--nowiki-00000016-QINU`"'; ID=math_'"`UNIQ--nowiki-00000014-QINU`"'; LBL='"`UNIQ--nowiki-00000014-QINU`"'; UST=[[#{{#invoke:decodeEncode|encode|charset='{{(}}{{)}}{{=}}|s={{UnstripNoWiki|%i}}}}|%l]]; SUB=[[#{{#invoke:decodeEncode|encode|charset='{{(}}{{)}}{{=}}|s={{UnstripNoWiki|math_'"`UNIQ--nowiki-00000014-QINU`"'}}}}|'"`UNIQ--nowiki-00000014-QINU`"']]; EXP=[[#math_&#123;&#123;&#61;&#125;&#125; 89&#039;&#039;|'"`UNIQ--nowiki-00000014-QINU`"']];✶
{{=}} 89''
FMT='"`UNIQ--nowiki-0000001B-QINU`"'; ID=math_'"`UNIQ--nowiki-00000019-QINU`"'; LBL='"`UNIQ--nowiki-00000019-QINU`"'; UST=[[#{{UnstripNoWiki|%i}}|{{#invoke:decodeEncode|encode|s={{UnstripNoWiki|%l}}}}]]; SUB=[[#{{UnstripNoWiki|math_'"`UNIQ--nowiki-00000019-QINU`"'}}|{{#invoke:decodeEncode|encode|s={{UnstripNoWiki|'"`UNIQ--nowiki-00000019-QINU`"'}}}}]]; EXP=[[#math_67''|67&#039;&#039;]];✶
67''

abc[s][s]defg

FMT='"`UNIQ--nowiki-0000001D-QINU`"'; ID=math_'"`UNIQ--nowiki-0000001E-QINU`"'; LBL='"`UNIQ--nowiki-0000001F-QINU`"'; UST={{#invoke:string|replace|[[{{UnstripNoWiki|#%i}}|%l]]|%%s||99|false}}; SUB={{#invoke:string|replace|[[{{UnstripNoWiki|#math_'"`UNIQ--nowiki-0000001E-QINU`"'}}|'"`UNIQ--nowiki-0000001F-QINU`"']]|%s||99|false}}; EXP=[[#math_=78''|'"`UNIQ--nowiki-0000001F-QINU`"']];✶

{{=}} 8''

FMT='"`UNIQ--nowiki-00000021-QINU`"'; ID=math_'"`UNIQ--nowiki-00000022-QINU`"'; LBL='"`UNIQ--nowiki-00000023-QINU`"'; UST={{#invoke:decodeEncode|encode|charset=^%z|s=[[{{UnstripNoWiki|#%i}}|%l]]}}; SUB={{#invoke:decodeEncode|encode|charset=^z|s=[[{{UnstripNoWiki|#math_'"`UNIQ--nowiki-00000022-QINU`"'}}|'"`UNIQ--nowiki-00000023-QINU`"']]}}; EXP=&#91;&#91;&#10;&#35;&#109;&#97;&#116;&#104;&#95;&#61;&#32;&#55;&#56;&#039;&#039;&#124;&#127;&#039;&quot;&#96;&#85;&#78;&#73;&#81;&#45;&#45;&#110;&#111;&#119;&#105;&#107;&#105;&#45;&#48;&#48;&#48;&#48;&#48;&#48;&#50;&#51;&#45;&#81;&#73;&#78;&#85;&#96;&quot;&#039;&#127;&#93;&#93;;✶

[[ #math_= 78''|&#127;'"`UNIQ--nowiki-00000023-QINU`"'&#127;]]

FMT='"`UNIQ--nowiki-00000025-QINU`"'; ID=math_'"`UNIQ--nowiki-00000026-QINU`"'; LBL='"`UNIQ--nowiki-00000027-QINU`"'; UST={{#invoke:string|replace|[[{{UnstripNoWiki|#%i}}|%l]]|ol|[q]|9|false}}; SUB={{#invoke:string|replace|[[{{UnstripNoWiki|#math_'"`UNIQ--nowiki-00000026-QINU`"'}}|'"`UNIQ--nowiki-00000027-QINU`"']]|ol|[q]|9|false}}; EXP=[[ #math_= 78''|'"`UNIQ--nowiki-00000027-QINU`"']];✶

[[

  1. math_= 78|{{=}} 8'']]
FMT='"`UNIQ--nowiki-00000029-QINU`"'; ID=math_'"`UNIQ--nowiki-0000002A-QINU`"'; LBL='"`UNIQ--nowiki-0000002B-QINU`"'; UST={{UnstripNoWiki|[[#%i|%l]]}}; SUB={{UnstripNoWiki|[[#math_'"`UNIQ--nowiki-0000002A-QINU`"'|'"`UNIQ--nowiki-0000002B-QINU`"']]}}; EXP=[[#math_= 8''|{{=}} 8'']];✶

{{=}} 8

FMT='"`UNIQ--nowiki-0000002D-QINU`"'; ID=math_'"`UNIQ--nowiki-0000002E-QINU`"'; LBL='"`UNIQ--nowiki-0000002F-QINU`"'; UST={{expand wikitext|{{UnstripNoWiki|[[#%i|%l]]}}}}; SUB={{expand wikitext|{{UnstripNoWiki|[[#math_'"`UNIQ--nowiki-0000002E-QINU`"'|'"`UNIQ--nowiki-0000002F-QINU`"']]}}}}; EXP=[[#math_= 8''|= 8'']];✶

= 8

dddddddd

[编辑]
FMT='"`UNIQ--nowiki-00000031-QINU`"'; ID=math_'"`UNIQ--nowiki-00000032-QINU`"'; LBL='"`UNIQ--nowiki-00000033-QINU`"'; UST=[[{{UnstripNoWiki|#%i}}|%l]]; SUB=[[{{UnstripNoWiki|#math_'"`UNIQ--nowiki-00000032-QINU`"'}}|'"`UNIQ--nowiki-00000033-QINU`"']]; EXP=[[ #math_{{=}} 8''|'"`UNIQ--nowiki-00000033-QINU`"']];✶

[[

  1. math_{{=}} 8|{{=}} 8'']]
FMT=[[#%i|%l]]; ID=someFrag; LBL='"`UNIQ--nowiki-00000035-QINU`"'; UST=[[#%i|%l]]; SUB=[[#someFrag|'"`UNIQ--nowiki-00000035-QINU`"']]; EXP=[[#someFrag|'"`UNIQ--nowiki-00000035-QINU`"']];✶

{{=}} 3''

= 3'' [[#abc|top]]

FMT='"`UNIQ--nowiki-00000037-QINU`"'; ID=foo; LBL=bar; UST=%Lnowiki%G{{=}} 3'' [[#abc|top]]%L/nowiki%G; SUB=<nowiki>{{=}} 3'' [[#abc|top]]</nowiki>; EXP='"`UNIQ--nowiki-00000038-QINU`"';✶

{{=}} 3'' [[#abc|top]]

FMT='"`UNIQ--nowiki-0000003A-QINU`"'; ID=foo; LBL=bar; UST={{=}}; SUB={{=}}; EXP==;✶

=

cccccccc

[编辑]
FMT='"`UNIQ--nowiki-0000003C-QINU`"'; ID=foo; LBL=bar; UST=%Lb%GwXyZ%L/b%G; SUB=<b>wXyZ</b>; EXP=<b>wXyZ</b>;✶

wXyZ

FMT='"`UNIQ--nowiki-0000003E-QINU`"'; ID=foo; LBL=bar; UST=&lt;b&gt;wXyZ&lt;/b&gt;; SUB=&lt;b&gt;wXyZ&lt;/b&gt;; EXP=&lt;b&gt;wXyZ&lt;/b&gt;;✶

<b>wXyZ</b>

FMT='"`UNIQ--nowiki-00000040-QINU`"'; ID=; LBL='"`UNIQ--nowiki-00000041-QINU`"'; UST={{#invoke:decodeEncode|encode|charset=%L%G" \'&{{=}}|s=%l}}; SUB={{#invoke:decodeEncode|encode|charset=<>" \'&{{=}}|s='"`UNIQ--nowiki-00000041-QINU`"'}}; EXP=&#039;&quot;`UNIQ--nowiki-00000041-QINU`&quot;&#039;;✶

'"`UNIQ--nowiki-00000041-QINU`"'

bbbbbbbb

[编辑]
FMT='"`UNIQ--nowiki-00000043-QINU`"'; ID=; LBL==lt; UST={{#invoke:decodeEncode|encode|charset=%L%G" \'&{{=}}|s=%l}}; SUB={{#invoke:decodeEncode|encode|charset=<>" \'&{{=}}|s==lt}}; EXP=&#61;lt;✶

=lt

FMT='"`UNIQ--nowiki-00000045-QINU`"'; ID=; LBL==lt; UST={{#invoke:decodeEncode|encode|charset=&lt;&gt;" \'&{{=}}|s=%l}}; SUB={{#invoke:decodeEncode|encode|charset=&lt;&gt;" \'&{{=}}|s==lt}}; EXP=&#61;&#108;&#116;;✶

=lt

aaaaaaaa

[编辑]
FMT='"`UNIQ--nowiki-00000047-QINU`"'; ID=; LBL=3''; UST={{#invoke:decodeEncode|encode|s=%l}}; SUB={{#invoke:decodeEncode|encode|s=3''}}; EXP=3&#039;&#039;;✶

3''

zzzzzzzz

[编辑]
FMT='"`UNIQ--nowiki-0000004B-QINU`"'; ID=math_3XX&lt;nowiki&gt;'&lt;/nowiki&gt;; LBL=3XX&lt;nowiki&gt;'&lt;/nowiki&gt;; UST=[[#%i|{{expand wikitext|{{#invoke:decodeEncode|decode|s=%l}}}}]]; SUB=[[#math_3XX&lt;nowiki&gt;'&lt;/nowiki&gt;|{{expand wikitext|{{#invoke:decodeEncode|decode|s=3XX&lt;nowiki&gt;'&lt;/nowiki&gt;}}}}]]; EXP=[[#math_3XX&lt;nowiki&gt;'&lt;/nowiki&gt;|3XX'"`UNIQ--nowiki-0000004C-QINU`"']];✶
3XX'
[[#math_5'|5']]
5555'

xxxxxxxx

[编辑]
  • FMT=[[#%i|%l]]; ID=math_&#039;&quot;`UNIQ--nowiki-00000057-QINU`&quot;&#039;; LBL=&#039;&quot;`UNIQ--nowiki-00000057-QINU`&quot;&#039;; UST=[[#%i|%l]]; SUB=[[#math_&#039;&quot;`UNIQ--nowiki-00000057-QINU`&quot;&#039;|&#039;&quot;`UNIQ--nowiki-00000057-QINU`&quot;&#039;]]; EXP=[[#math_&#039;&quot;`UNIQ--nowiki-00000057-QINU`&quot;&#039;|&#039;&quot;`UNIQ--nowiki-00000057-QINU`&quot;&#039;]];✶
    [[#math_'"`UNIQ--nowiki-00000057-QINU`"'|'"`UNIQ--nowiki-00000057-QINU`"']]
  • FMT=[[#%i|%l]]; ID=math_7&#039;&#039;; LBL=7&#039;&#039;; UST=[[#%i|%l]]; SUB=[[#math_7&#039;&#039;|7&#039;&#039;]]; EXP=[[#math_7&#039;&#039;|7&#039;&#039;]];✶
    7''

yyyyyyyy

[编辑]
FMT='"`UNIQ--nowiki-0000005F-QINU`"'; ID=math_4; LBL=4; UST='''[[#%i|%l]]'''%Lref%G{{cite web|url=https://gemini.google.com/app|title=Google Gemini}}%L/ref%G; SUB='''[[#math_4|4]]'''<ref>{{cite web|url=https://gemini.google.com/app|title=Google Gemini}}</ref>; EXP='''[[#math_4|4]]''''"`UNIQ--ref-00000060-QINU`"';✶
4[1]
FMT='"`UNIQ--nowiki-00000062-QINU`"'; ID=ykk; LBL=land; UST=x{{((}}={{))}}y; %Lb%Gblah%L/b%G_%i_foo_%l_quax; SUB=x{{((}}={{))}}y; <b>blah</b>_ykk_foo_land_quax; EXP=x{{=}}y; <b>blah</b>_ykk_foo_land_quax;✶

x{{=}}y; blah_ykk_foo_land_quax


3C'
FMT='"`UNIQ--nowiki-0000006A-QINU`"'; ID=math_3B&lt;nowiki&gt;'&lt;/nowiki&gt;; LBL=3B&lt;nowiki&gt;'&lt;/nowiki&gt;; UST=[[#%i|{{UnstripNoWiki|{{#invoke:decodeEncode|decode|s=%l}}}}]]; SUB=[[#math_3B&lt;nowiki&gt;'&lt;/nowiki&gt;|{{UnstripNoWiki|{{#invoke:decodeEncode|decode|s=3B&lt;nowiki&gt;'&lt;/nowiki&gt;}}}}]]; EXP=[[#math_3B&lt;nowiki&gt;'&lt;/nowiki&gt;|3B<nowiki>'</nowiki>]];✶
3B<nowiki>'</nowiki>

暫存

[编辑]

下面這段說明因這裡提到「Recommendation is currently restricted to use inside TemplateStyles (phab:T360562, phab:T361934).」,所以就先不更新到NumBlk的說明頁面了。

18
28
38
48
58
68
78
88
98
108
118

Transcluded categories

[编辑]

模板測試

[编辑]

Numbered block相關

[编辑]

{{ 滾動中直接叫用{{NumBlk}}的例子

}} 滾動中直接叫用{{NumBlk}}的例子

Eq. 3778
Eq. 3779
1780
Fe3+ + H2O2 → Fe2+ + HOO + H+ 2781
3782
3.5783
1784
13.7785
1.2786
3.5787
<3.5788a>
<3.5788b>
<3.5788c>
<3.5788d>
[3.5789]
[3.5790]
[3.5791]
[3.5792]
<Big>(3.5794a)</Big>
(3.5794b)
(3.5795)
Eq. 3830
Eq. 3831
Fig.1: Bayesian Network representation of Eq.(6)
Fig.1: Bayesian Network representation of Eq.(6)



A Bayesian network (or a belief network) is a probabilistic graphical model that represents a set of variables and their probabilistic independencies. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases.

, Eq.(6832)
[A1]
[A2]
[A]

2=foo; 1=blah;

2=math_101; 1=101;
{{使用者:Justin545/沙盒/ex3|math_102|102}}

  • 175
  • {{{2}}} [公式175]
  • {{{2}}} [公式175]
  • #not-exist
16
5
49
90
377
8

8
(8)
(8)

block number 73

{{subst:#ifexpr:5 > 0|表达式错误:无法识别标点符号“{”。|1}}

{{subst:#ifexpr:5 > 0|表达式错误:无法识别标点符号“{”。|1}}

{{subst:#ifexpr:5 > 0|表达式错误:无法识别标点符号“{”。|1}}

{{subst:#ifexpr:5 > 0|表达式错误:无法识别标点符号“{”。|1}}

{{subst:#ifexpr:5 > 0|表达式错误:无法识别标点符号“{”。|1}}

{{subst:#ifexpr:5 > 0|表达式错误:无法识别标点符号“{”。|1}}

區塊(73)的特性已被指定!還有(16)、(5)、(49)、(90)、(377)!

剝削和反剝削

[编辑]

終結 完結 殲滅 消滅 消除 斷絕 阻絕 杜絕 瓦解 解放 禁

計時

[编辑]
Def.1-o

--- 0.00108(second)

Def.1.5-o

--- 0.00096000000000002(second)

Def.1.6-o

--- 0.00198(second)

Def.1.7-o

--- 0.00106(second)

Def.1.8-o

--- 0.00087999999999999(second)

Def.1.9-o

--- 0.00089999999999998(second)

Def.1.91-o

--- 0.00094(second)

Def.1.92-o

--- 0.00094(second)

Def.1.93-o

--- 0.00086(second)

Def.1.931-o2

--- 0.00114(second)

Def.1.932-o2

--- 0.0012(second)

Def.1.933-o2

--- 0.00118(second)

Def.1.934-o2

--- 0.00108(second)

Def.1.935-o2

--- 0.00112(second)

Def.1.936-o2

--- 0.00112(second)

Def.1.937-o2

--- 0.00114(second)

Def.1.938-o2

--- 0.00212(second)

Def.1.939-o2

--- 0.00124(second)

{Def.1.940-o2f}

--- 0.00174(second)

{Def.1.941-o2f}

--- 0.00174(second)

{Def.1.942-o2f}

--- 0.00166(second)

{Def.1.943-o2f}

--- 0.00172(second)

{Def.1.944-o2f}

--- 0.00164(second)

{Def.1.945-o2f}

--- 0.00174(second)

Def.1-ex5

--- 0.00402(second)

Def.2-ex5

--- 0.00188(second)

Def.3-ex5

--- 0.00286(second)

Def.4-ex5

--- 0.00196(second)

Def.5-ex5

--- 0.0019(second)

Def.6-ex5

--- 0.00184(second)

Def.7-ex5

--- 0.00188(second)

Def.8-ex5

--- 0.00186(second)

Def.9-ex5

--- 0.00196(second)

Def.10-ex5

--- 0.0019(second)

Def.1-ex4

--- 0.00136(second)

Def.2-ex4

--- 0.00232(second)

Def.3-ex4

--- 0.00134(second)

Def.4-ex4

--- 0.00134(second)

Def.5-ex4

--- 0.00136(second)

Def.6-ex4

--- 0.00146(second)

Def.7-ex4

--- 0.00132(second)

Def.8-ex4

--- 0.00132(second)

Def.9-ex4

--- 0.00136(second)

Def.10-ex4

--- 0.00132(second)

(Def.2-s)

--- 0.00334(second)

(Def.3-s)

--- 0.00096000000000002(second)

(Def.4-s)

--- 0.00094(second)

(5-s)

--- 0.00094(second)

(6-s)

--- 0.00087999999999999(second)

(7-s)

--- 0.002(second)

(8-s)

--- 0.00094(second)

line spacing tests

[编辑]

Misc.

[编辑]
xyz
123
xyz
123

db6d77809cf77e2d00a078cd68e9f223

13579

eeb14ff26fc101c7a74e492fb57c5d2e

Monolithic indent

[编辑]
41
42
43
51
52
53
61
62
63

Indentation comparisons

[编辑]

70.5
71.5
72.5
73.5
79.5

EN NumBlk examples

[编辑]

Equations may render HTML

[编辑]

{{NumBlk|:|<math>y=ax+b</math>|Eq. 3}}

Eq. 3

{{NumBlk|:|<math>ax^2+bx+c=0</math>|Eq. 3}}

Eq. 3

{{NumBlk|:|<math>\Psi(x_1,x_2)=U(x_1)V(x_2)</math>|2}}

2

Indentation

[编辑]

{{NumBlk||<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3.5}}

3.5

{{NumBlk|:|<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|1}}

1

{{NumBlk|::|<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|13.7}}

13.7

{{NumBlk|:::|<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|1.2}}

1.2

Formatting of equation number

[编辑]

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=3.5|RawN=.}}

3.5

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<3.5>|RawN=.}}

<3.5>

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=[3.5]|RawN=.}}

[3.5]

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3='''[3.5]'''|RawN=.}}

[3.5]

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>}}

[3.5]

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.}}

[3.5]

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<math>(3.5)</math>|RawN=.}}

Line style

[编辑]

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''(3.141)'''</Big>|RawN=.|LnSty=0.2em dotted #e5e5e5}}

(3.141)

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''(3.5)'''</Big>|RawN=.|LnSty=1px dashed red}}

(3.5)

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''(3.5)'''</Big>|RawN=.|LnSty=3px dashed #0a7392}}

(3.5)

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=3px solid green}}

[3.5]

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=5px dotted blue}}

[3.5]

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=0px solid green}}

[3.5]

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=5px none green}}

[3.5]

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=3px double green}}

[3.5]

Line height and indentation (1)

[编辑]
The following equations
:<math>3x+2y-z=1</math>
:<math>2x-2y+4z=-2</math>
:<math>-2x+y-2z=0</math>
form a system of three equations.

The following equations

form a system of three equations.

The following equations
{{NumBlk|:|<math>3x+2y-z=1</math>|1}}
{{NumBlk|:|<math>2x-2y+4z=-2</math>|2}}
{{NumBlk|:|<math>-2x+y-2z=0</math>|3}}
form a system of three equations.

The following equations

1
2
3

form a system of three equations.

The following equations
<div style="line-height: 0;">
{{NumBlk|:|<math>3x+2y-z=1</math>|1}}
{{NumBlk|:|<math>2x-2y+4z=-2</math>|2}}
{{NumBlk|:|<math>-2x+y-2z=0</math>|3}}
</div>
form a system of three equations.

The following equations

1
2
3

form a system of three equations.

The following equations
<div style="line-height: 0;">
{{NumBlk||<math>3x+2y-z=1</math>|1}}
{{NumBlk||<math>2x-2y+4z=-2</math>|2}}
{{NumBlk||<math>-2x+y-2z=0</math>|3}}
</div>
form a system of three equations.

The following equations

1
2
3

form a system of three equations.

The following equations
<div style="line-height: 0; margin-left: 1.6em;">
{{NumBlk||<math>3x+2y-z=1</math>|1}}
{{NumBlk||<math>2x-2y+4z=-2</math>|2}}
{{NumBlk||<math>-2x+y-2z=0</math>|3}}
</div>
form a system of three equations.

The following equations

1
2
3

form a system of three equations.

Line height and indentation (2)

[编辑]
The following equations
:<math>3x+2y-z=1</math>
::<math>2x-2y+4z=-2</math>
:::<math>-2x+y-2z=0</math>
form a system of three equations.

The following equations

form a system of three equations.

The following equations
<div style="line-height: 0; margin-left: 1.6em;">
{{NumBlk||<math>3x+2y-z=1</math>|1}}
<div style="margin-left: 1.6em;">
{{NumBlk||<math>2x-2y+4z=-2</math>|2}}
<div style="margin-left: 1.6em;">
{{NumBlk||<math>-2x+y-2z=0</math>|3}}
</div>
</div>
</div>
form a system of three equations.

The following equations

1
2
3

form a system of three equations.

The following equations
<div style="line-height: 0;">
<div style="margin-left: calc(1.6em * 1);">
{{NumBlk||<math>3x+2y-z=1</math>|1}}
</div>
<div style="margin-left: calc(1.6em * 2);">
{{NumBlk||<math>2x-2y+4z=-2</math>|2}}
</div>
<div style="margin-left: calc(1.6em * 3);">
{{NumBlk||<math>-2x+y-2z=0</math>|3}}
</div>
</div>
form a system of three equations.

The following equations

1
2
3

form a system of three equations.

Unordered list

[编辑]
* <math>3x+2y-z=1</math>
* <math>2x-2y+4z=-2</math>
* <math>-2x+y-2z=0</math>
<ul style="line-height: 0;">
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{NumBlk||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{NumBlk||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{NumBlk||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
</ul>
  • Eq. 1
  • Eq. 2
  • Eq. 3
<ul style="line-height: 0;">
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{NumBlk||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{NumBlk||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{NumBlk||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
</ul>
  • Eq. 1
  • Eq. 2
  • Eq. 3

Ordered list

[编辑]
# <math>3x+2y-z=1</math>
# <math>2x-2y+4z=-2</math>
# <math>-2x+y-2z=0</math>
<ol style="line-height: 0;">
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{NumBlk||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{NumBlk||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{NumBlk||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
</ol>
  1. Eq. 1
  2. Eq. 2
  3. Eq. 3
<ol style="line-height: 0;">
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{NumBlk||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{NumBlk||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{NumBlk||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
</ol>
  1. Eq. 1
  2. Eq. 2
  3. Eq. 3

Border

[编辑]

{{NumBlk|:|<math>y=ax+b</math>|Eq. 3|Border=1}}

Eq. 3

When content of the blocks and block numbers are far apart

[编辑]
Markup
 <div style="line-height:0;">
{{NumBlk|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1}}
{{NumBlk|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2}}
{{NumBlk|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3}}
{{NumBlk|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4}}
{{NumBlk|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5}}
</div>
Renders as
1
2
3
4
5
Markup
<div style="line-height:0;">
{{NumBlk|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1|LnSty=0.37ex dotted Gainsboro}}
{{NumBlk|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2|LnSty=0.37ex dotted Gainsboro}}
{{NumBlk|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3|LnSty=0.37ex dotted Gainsboro}}
{{NumBlk|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4|LnSty=0.37ex dotted Gainsboro}}
{{NumBlk|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5|LnSty=0.37ex dotted Gainsboro}}
</div>
Renders as
1
2
3
4
5
Markup
<div style="line-height:0;">
{{NumBlk|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1|LnSty=0.37ex dotted Gainsboro}}
{{NumBlk|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2|LnSty=0.37ex none Gainsboro}}
{{NumBlk|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3|LnSty=0.37ex dotted Gainsboro}}
{{NumBlk|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4|LnSty=0.37ex none Gainsboro}}
{{NumBlk|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5|LnSty=0.37ex dotted Gainsboro}}
</div>
Renders as
1
2
3
4
5
Markup
<div style="line-height:0;">
<div style="background-color: Beige;">
{{NumBlk|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1}}
</div> <div style="background-color: none;">
{{NumBlk|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2}}
</div> <div style="background-color: Beige;">
{{NumBlk|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3}}
</div> <div style="background-color: none;">
{{NumBlk|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4}}
</div> <div style="background-color: Beige;">
{{NumBlk|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5}}
</div>
</div>
Renders as
1
2
3
4
5
Markup
(mouse over the row you want to highlight)
{{row hover highlight}}
{| class="hover-highlight" style="line-height:0; width: 100%; border-collapse: collapse; margin: 0; padding: 0;"
|-
| {{NumBlk|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1}}
|-
| {{NumBlk|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2}}
|-
| {{NumBlk|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3}}
|-
| {{NumBlk|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4}}
|-
| {{NumBlk|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5}}
|}
Renders as

(mouse over the row you want to highlight)

1
2
3
4
5

Proof of hypothetical syllogism by constructive dilemma

[编辑]
/ / Lemma: Logical equivalences involving conditional statements B
/ / Lemma: Identity laws A
/ / Lemma: Negation laws A
/ / Lemma: Constructive dilemma
/ / Lemma: Logical equivalences involving conditional statements A
.1 / / premise
.11 / .1 / Logical equivalences involving conditional statements B
.12 / .11
.13 / .1 .12
.14 / .13 / Identity laws A
.15 / .14
.16 / .15
.17 / .13 .16
.18 / .17
.19 / .18 / Negation laws A
.2 / .19
.21 / .18 .2
.22 / .21 / Constructive dilemma
.23 / .22
.24 / .23
.25 / .24 / Logical equivalences involving conditional statements A
.26 / .25
.27 / .24 .26
.28 / .2 .27
.29 / .28
.3 / .16 .29
.31 / .12 .3 / conclusion
  1. ^ Google Gemini.