Talk:偽內切圓
添加话题外观
129.104.241.218的最新留言:1年前
![]() |
本条目依照页面评级標準評為初级。 本条目属于下列维基专题范畴: |
||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
![]() | 本條目有内容譯自英語維基百科页面“Mixtilinear incircles of a triangle”(原作者列于其历史记录页)。 |
伪圆 | 定义(以A-伪圆为例) | 确定方式(以A-伪圆为例) | 连接三角形三顶点及其对应和外接圆或内切圆的切点,三线共点于 | 三圆根心 |
---|---|---|---|---|
伪内切圆 | 与AB、AC相切且与外接圆内切 | 与AB、AC的切点连线中点为内心 | X(56) | X(999): "X(999) is the radical center of the mixtilinear incircles." |
伪旁切圆 | 与AB、AC延长线相切且与外接圆外切 | 与AB、AC的切点连线中点为A-旁心 | X(55) | X(6244): "X(6244) = radical center of mixtilinear excircles" |
伪外接圆 | 过B、C且与内切圆内切 | 与内切圆的切点在连接A-旁心JA和内切圆在BC的切点D的直线上;过JAD的中点 | X(479): "Let A′ be the point in which the incircle is tangent to a circle that passes through vertices B and C, and define B and C cyclically. The lines AA′, BB′, CC′ concur in X(479)." | X(57): "Let Oa be the circle passing through B and C, and tangent to the incircle. Define Ob and Oc cyclically. Let A′ be the point of tangency of Oa and the incircle, and define B′ and C′ cyclically. Triangle A′B′C′ is perspective to the intouch triangle at X(57). Also, X(57) is the radical center of circles Oa, Ob, Oc." |
伪旁接圆 | 过B、C且与A-旁切圆内切 | 与A-旁切圆的切点在连接内心I和A-旁切圆在BC的切点D′的直线上;过ID′的中点 | X(5423): "Let A′ be the point in which the A-excircle is tangent to the circle OA that passes through vertices B and C, and define B′ and C′ cyclically. The lines AA′, BB′, CC′ concur in X(5423)." | X(2297)(和伪外接圆的情形不同,若设A-伪旁接圆与A-旁切圆内切于A′,同理定义B′、C′,则△A′B′C′和旁切三角形的透视中心即为内心I,因为A′、A-旁切圆在BC的切点、I共线。) |
其中的X()是指在三角形各中心百科全书中的索引。--129.104.241.218(留言) 2024年4月7日 (日) 00:44 (UTC)