跳转到内容

高熵氧化物

维基百科,自由的百科全书
高熵氧化物 (MgNiCoCuZn) 0.2 O 的結構及其位點佔據情況。氧原子以紅色表示。

高熵氧化物(英語:High-entropy oxides,簡稱:HEO) 是一種含有五種或更多種主要金屬陽離子且具有單相晶體結構的複合氧化物。 Rost 等人於 2015 年報告了第一種高熵氧化物,即岩鹽結構英语rock salt structure中的 (MgNiCuCoZn)0.2O 。.[1]目前,HEO已成功合成為多種結構,包括螢石[2]鈣鈦礦尖晶石[3][4]目前,HEO 正在被研究用作功能性材料。[3][4][5][6]

歷史

[编辑]

在高熵材料領域,高熵合金 (HEA) 的出現早於高熵氧化物(HEO),後者由 葉均蔚 等人於 2004 年首次報導。[7] 高熵合金是由五種或五種以上主要金屬元素組成的合金。一些高熵合金已被證明具有理想的機械性能,例如在高溫下仍能保持強度/硬度。[8] 2010 年代,高熵合金的研究進展顯著加速。[9]

2015年,Rost等人報告了首例高熵合金(HEO),即存在於岩鹽結構中的(MgNiCuCoZn) 0.2 O。與高熵合金類似,(MgNiCuCoZn) 0.2 O也是多組分單相材料。 (MgNiCuCoZn) 0.2 O材料中的陽離子位點在成分上呈無序狀態,與高熵合金類似。然而,與高熵合金不同的是,(MgNiCuCoZn) 0.2 O含有有序的陰離子亞晶格。自2015年發現高熵合金以來,該領域迅速發展。[3][5]

自高熵氧化物 (HEO) 發現以來,高熵材料領域已擴展到包括高熵金屬二硼化物、高熵碳化物、高熵硫化物和高熵鋁矽化物。[5]

預測HEO的形成

[编辑]

熵穩定原理

[编辑]

高熵氧化物的形成是基於熵穩定原理。熱力學預測,在給定溫度和壓力下,將形成使吉布斯自由能最小的結構。吉布斯自由能公式如下:

其中G吉布斯自由能HT絕對溫度S。從公式可以清楚看出,較大的熵會降低吉布斯自由能,進而有利於相穩定性。此外,也可以看出,在較高溫度下,熵在決定相穩定性方面變得越來越重要。在多組分系統中,熵的一個組分是混合熵( )。對於理想的混合物, 採用以下形式:

其中,R理想氣體常數n為組分數,c i為組分i的原子分數。 隨著組件數量的增加而增加。對於給定數量的組件, 當組分的原子分數接近等摩爾量時達到最大化。

原岩鹽HEO (MgNiCuCoZn) 0.2 O提供了熵穩定的證據。單相(MgNiCuCoZn) 0.2 O可以透過CuO、CoO、NiO、MgO和ZnO的固相反應製備。[1] Rost等人報告,在生成單相(MgNiCuCoZn) 0.2 O的固相反應條件下,五種氧化物前驅物中的任何一種缺失都會產生多相樣品[1],顯示構型熵使材料穩定。

其他考慮因素

[编辑]

從吉布斯自由能公式可以清楚看出,焓減是相穩定的另一個重要指標。對於高熵合金(HEO)的形成,生成焓必須夠小,才能被構型熵克服。此外,上述討論假設反應動力學允許熱力學有利相的形成。

合成方法

[编辑]

固相反應

[编辑]

可以透過固相反應法製備 HEO 的塊體樣品。在該技術中,將氧化物前體球磨並壓成坯體,然後在高溫下燒結。所提供的熱能加速了坯體內部的擴散,從而使樣品內部形成新相。固相反應通常在空氣中進行,以使富氧混合物和缺氧混合物分別從大氣中釋放和吸收氧氣。氧化物前驅物不需要具有與所需 HEO 相同的晶體結構即可使固相反應法有效。例如,可以使用CuO和ZnO作為前驅物來合成 (MgNiCuCoZn) 0.2 O。在室溫下,CuO 具有黑銅礦英语tenorite結構,而 ZnO 具有纖鋅礦結構。

聚合物空間包封

[编辑]

聚合物空間包封是一種用於合成氧化物的濕式化學技術。它基於與溶膠-凝膠法類似的原理,該法也用於合成 HEO。[10][11]聚合物空間包覆需要將含有所需金屬陽離子的水溶性化合物(例如金屬醋酸鹽、金屬氯化物)置於水和水溶性聚合物(例如 PVA、PEG)的溶液中。在溶液中,陽離子充分混合並由聚合物鏈緊密結合在一起。[12]水被除去,形成泡沫,泡沫的有機成分在煅燒步驟中燒掉,得到細而純淨的混合氧化物粉末,可將其壓成生坯並燒結。此方法由 Nguyen 等人首次報導。 2011 年。 2017 年,Kriven 和 Tseng 報告了首個聚合物空間包覆 HEO 的合成。[13]

聚合物空間包覆可用於合成難以以固相法成功合成的塊狀HEO樣品。例如,Musico 等人利用固相反應和聚合物空間包封合成了高熵銅酸鹽(LaNdGdTbDy)0.4CuO4[12]。相反應製備的樣品的X射線衍射圖顯示存在第二相的細小夾雜物,能量色散X射線光譜顯示某些陽離子分佈不均勻。在使用聚合物空間包封製備的此材料樣品中,既未發現雜質峰,也未發現陽離子分佈不均勻的跡象。

其他技術

[编辑]

用於合成HEO的其他技術包括:

HEO材料

[编辑]

最早合成的高熵氧化物 (HEO) 具有岩鹽結構。此後,HEO 家族不斷擴展,包括鈣鈦礦、尖晶石、螢石和其他結構。[4][22][12][23][24][25][26]其中一些結構,例如鈣鈦礦結構,值得注意的是它們具有兩個陽離子位點,每個陽離子位點可能獨立地具有成分無序性。例如,已經合成了高熵鈣鈦礦 (GdLaNdSmY) 0.2 MnO 3(A 位構型熵)、Gd(CoCrFeMnNi) 0.2 O 3(B 位構型熵)和 (GdLaNdSmY) 0.2 (CoCrFeMnNiNi) 0.2 O3(A 位及B位構型熵)。[27][28]

HEO材料及其晶體結構的範例
結構 例子 參考
岩鹽 Rock Salt (MgNiCuCoZn)0.2O Rost et al[1]
螢石 Fluorite (GdLaCeHfZr)0.2O2 and (GdLaYHfZr)0.202;

(CeZrHfSnTi)0.2O2

Anandkumar et al;[29]

Chen et al[26]

尖晶石 Spinel (CoCrFeMnNi)0.6O4

(CrMnFeCoNiCuZn)0.43O4

Dabrowa et al[23]

Swindell et al[4]

鈣鈦礦 Perovskite Sr(ZrSnTiHfMn)0.2O3 Jiang et al[24]
燒綠石 Pyrochlore (GdEuSmNdLa)0.4Zr2O7 Teng et al[25]
銅酸鹽鈣鈦礦 Cuprate Perovskite (LaNdGdTbDy)0.4CuO4 Musico et al[12]

註:(MgNiCuCoZn) 0.2 O 表示低熵岩石結構 MO,其中 0.2 值表示單一陽離子的理想(等摩爾)貢獻

特性和應用

[编辑]

與通常研究其機械性能的高熵合金(HEA)不同,HEO 通常被作為功能材料進行研究。原始 HEO,(MgNiCuCoZn) 0.2 O,已被研究作為一種有前景的能源生產和儲存材料,例如用作鋰離子電池的負極材料[30]、大k介電材料[31]或用於催化[32][33][4]

低熱導率

[编辑]

研究表明,增加材料的構型熵會降低其晶格熱導率。[34]相應地,HEO 的熱導率通常低於具有相同晶體結構且每個晶格位置只有一個陽離子的材料。[35][36] HEO 的熱導率通常大於或與具有相同成分的非晶態材料的熱導率相當。[3]然而,晶體材料的彈性模量通常高於具有相同成分的非晶態材料。這些因素的結合導致 HEO 在所有材料中具有最高的彈性模量與熱導率之比,從而佔據了性能空間的獨特區域。[35]

透過陽離子選擇實現性能可調

[编辑]

HEO 透過陽離子選擇增強功能特性的可調性。磁性[37][38]、催化[39][4] 、和熱物理特性[40]可以透過改變給定 HEO 的陽離子組成來調整。許多材料應用需要一組高度特定的特性。例如,熱障塗層需要與金屬表面相符的熱膨脹係數、高溫相穩定性、低熱導率和化學惰性等特性。[41]由於其固有的可調性,HEO 已被提議作為熱障塗層等先進材料應用的候選材料。[40]

能源儲存與轉換應用

[编辑]

電催化與非均相催化

[编辑]

HEO 已展現出作為關鍵能量轉換反應電催化劑的巨大潛力,包括氧析出反應英语Oxygen evolution (OER)和氧還原反應英语Oxygen reduction reaction (ORR)。 HEO 也被期望成為氣態反應(例如在車輛催化燃燒中至關重要的一氧化碳 (CO) 氧化)中更豐富的異相催化劑[4][42]。  HEO 中的多種陽離子可產生多樣化的活性位點,進而提高催化效率與耐久性。此外,高構型熵增強了相穩定性,防止材料在電化學條件下降解。這些特性使 HEO 成為燃料電池和金屬空氣電池中極具吸引力的候選材料。 [43]

超級電容器

[编辑]

由於HEO能夠適應多種氧化還原反應,人們已將其用作超級電容器的電極材料。其高表面積和可調的氧化態有助於提高電容和電荷儲存能力。研究表明,與傳統的過渡金屬氧化物相比,基於HEO的超級電容器表現出更高的循環穩定性,使其適用於高功率儲能應用。例如,已經製備出了鈣鈦礦型La(CoCrFeMnNiAl x ) 1/(5+x) O 3[44] 和La 0.7 Bi 0.3 Mn 0.4 Fe 0.3 Cu 0.3 O 3 [45]

鋰離子和固態電池

[编辑]

由於HEO結構堅固且能夠促進離子傳輸,其正被研究作為鋰離子電池(LIB)和固態電池的潛在電極材料。其多元素組成能夠提高電子導電性和離子擴散性能,這對於高性能電池電極至關重要。此外,HEO也表現出更強的抗相變能力,解決了傳統電池材料中常見的容量衰減和循環穩定性差等問題。

固態氧化物燃料電池(SOFC)

[编辑]

高熵氧化物 (HEO) 已被研究用作固態氧化物燃料電池 (SOFC) 的潛在電極和電解質材料。它們的高熵值可以穩定氧空位,從而提高氧離子的電導率和較低工作溫度下的電化學活性。這有望使 SOFC 更有效率、更耐用,從而減少對傳統系統中使用的昂貴稀土元素的依賴。[46]

術語

[编辑]

高熵氧化物的定義有爭議。在氧化物文獻中,該術語通常指任何具有至少五種主要陽離子的氧化物。[47]然而,有人認為這是一種誤稱,因為大多數報告都忽略了計算構型熵。[47]此外,針對 10 種高熵氧化物 (HEO) 的調查發現,只有 3 種是熵穩定的[48]。有人建議用三個術語取代 HEO:成分複雜氧化物、高熵氧化物和熵穩定氧化物[47]。其中,成分複雜是指多種元素佔據同一亞晶格的材料,高熵是指構型熵在穩定過程中發揮作用的材料,熵穩定是指熵在焓項中占主導地位並且是形成結晶相所必需的材料。

參見

[编辑]
  • 高熵合金
  1. ^ 1.0 1.1 1.2 1.3 Rost, Christina M.; Sachet, Edward; Borman, Trent; Moballegh, Ali; Dickey, Elizabeth C.; Huo, Dong; Jones, Jacob L.; Curtarolo, Stefano; Maria, John-Paul. Entropy-stabilized oxides. Nature Communications. 2015, 6: 8485. Bibcode:2015NatCo...6.8485R. PMC 4598836可免费查阅. PMID 26415623. doi:10.1038/ncomms9485. 
  2. ^ Anandkumar, Mariappan; Bhattacharya, Saswata; Deshpande, Atul Suresh. Low temperature synthesis and characterization of single phase multi-component fluorite oxide nanoparticle sols. RSC Advances. 2019-08-23, 9 (46): 26825–26830. Bibcode:2019RSCAd...926825A. ISSN 2046-2069. PMC 9070433可免费查阅. PMID 35528557. doi:10.1039/C9RA04636D (英语). 
  3. ^ 3.0 3.1 3.2 3.3 Zhang, Rui-Zhi; Reece, Michael J. Review of high entropy ceramics: design, synthesis, structure and properties. Journal of Materials Chemistry A. 2019-10-08, 7 (39): 22148–22162. ISSN 2050-7496. S2CID 203944327. doi:10.1039/C9TA05698J可免费查阅 (英语). 
  4. ^ 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 Swindell, Joshua D.; Tainton, Gareth R.M.; Chansai, Sarayute; Hazeldine, Kerry; Buckingham, Mark A.; Walton, Alex S.; Hardacre, Christopher; Haigh, Sarah J.; Lewis, David J. Improving CO Oxidation Catalysis Over High Entropy Spinels by Increasing Disorder. Advanced Science: 2413424. ISSN 2198-3844. PMC 12005821可免费查阅 请检查|pmc=值 (帮助). doi:10.1002/advs.202413424可免费查阅 (英语). 
  5. ^ 5.0 5.1 5.2 Musicó, Brianna L.; Gilbert, Dustin; Ward, Thomas Zac; Page, Katharine; George, Easo; Yan, Jiaqiang; Mandrus, David; Keppens, Veerle. The emergent field of high entropy oxides: Design, prospects, challenges, and opportunities for tailoring material properties. APL Materials. 2020-04-01, 8 (4): 040912. Bibcode:2020APLM....8d0912M. S2CID 218784086. doi:10.1063/5.0003149可免费查阅. 
  6. ^ Kotsonis, George N.; Almishal, Saeed S. I.; Marques dos Santos Vieira, Francisco; Crespi, Vincent H.; Dabo, Ismaila; Rost, Christina M.; Maria, Jon-Paul. High-entropy oxides: Harnessing crystalline disorder for emergent functionality. Journal of the American Ceramic Society. 2023-06-24, 106 (10): 5587–5611. ISSN 0002-7820. doi:10.1111/jace.19252可免费查阅. hdl:10919/117566可免费查阅 (英语). 
  7. ^ Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes需要付费订阅. Advanced Engineering Materials. 2004, 6 (5): 299–303. S2CID 137380231. doi:10.1002/adem.200300567. 
  8. ^ Hsu, Chin-You; Juan, Chien-Chang; Wang, Woei-Ren; Sheu, Tsing-Shien; Yeh, Jien-Wei; Chen, Swe-Kai. On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys需要付费订阅. Materials Science and Engineering: A. 2011-04-25, 528 (10): 3581–3588. ISSN 0921-5093. doi:10.1016/j.msea.2011.01.072 (英语). 
  9. ^ Tsai, Ming-Hung; Yeh, Jien-Wei. High-Entropy Alloys: A Critical Review. Materials Research Letters. 2014-07-03, 2 (3): 107–123. ISSN 2166-3831. S2CID 56099930. doi:10.1080/21663831.2014.912690可免费查阅 (英语). 
  10. ^ 10.0 10.1 Asim, Muhammad; Hussain, Akbar; Khan, Safia; Arshad, Javeria; Butt, Tehmeena Maryum; Hana, Amina; Munawar, Mehwish; Saira, Farhat; Rani, Malika; Mahmood, Arshad; Janjua, Naveed Kausar. Sol-Gel Synthesized High Entropy Metal Oxides as High-Performance Catalysts for Electrochemical Water Oxidation. Molecules. January 2022, 27 (18): 5951. ISSN 1420-3049. PMC 9504205可免费查阅. PMID 36144684. doi:10.3390/molecules27185951可免费查阅 (英语). 
  11. ^ 11.0 11.1 Petrovičovà, Beatrix; Xu, Wenlei; Musolino, Maria Grazia; Pantò, Fabiola; Patanè, Salvatore; Pinna, Nicola; Santangelo, Saveria; Triolo, Claudia. High-Entropy Spinel Oxides Produced via Sol-Gel and Electrospinning and Their Evaluation as Anodes in Li-Ion Batteries. Applied Sciences. January 2022, 12 (12): 5965. ISSN 2076-3417. doi:10.3390/app12125965可免费查阅 (英语). 
  12. ^ 12.0 12.1 12.2 12.3 Musicó, Brianna L.; Wright, Quinton; Delzer, Cordell; Ward, T. Zac; Rawn, Claudia J.; Mandrus, David G.; Keppens, Veerle. Synthesis method comparison of compositionally complex rare earth-based Ruddlesden–Popper n = 1 T′-type cuprates. Journal of the American Ceramic Society. July 2021, 104 (7): 3750–3759. ISSN 0002-7820. OSTI 1777687. S2CID 233945514. doi:10.1111/jace.17750 (英语). 
  13. ^ Nguyen, My H.; Lee, Sang-Jin; Kriven, Waltraud M. Synthesis of oxide powders by way of a polymeric steric entrapment precursor route需要付费订阅. Journal of Materials Research. October 1999, 14 (8): 3417–3426. Bibcode:1999JMatR..14.3417N. ISSN 2044-5326. S2CID 94373425. doi:10.1557/JMR.1999.0462 (英语). 
  14. ^ Sarkar, Abhishek; Djenadic, Ruzica; Wang, Di; Hein, Christina; Kautenburger, Ralf; Clemens, Oliver; Hahn, Horst. Rare earth and transition metal based entropy stabilised perovskite type oxides. Journal of the European Ceramic Society. 2018-05-01, 38 (5): 2318–2327. ISSN 0955-2219. doi:10.1016/j.jeurceramsoc.2017.12.058 (英语). 
  15. ^ Wang, Qingsong; Sarkar, Abhishek; Li, Zhenyou; Lu, Yang; Velasco, Leonardo; Bhattacharya, Subramshu S.; Brezesinski, Torsten; Hahn, Horst; Breitung, Ben. High entropy oxides as anode material for Li-ion battery applications: A practical approach. Electrochemistry Communications. 2019-03-01, 100: 121–125. ISSN 1388-2481. S2CID 104458246. doi:10.1016/j.elecom.2019.02.001可免费查阅 (英语). 
  16. ^ Braun, Jeffrey L.; Rost, Christina M.; Lim, Mina; Giri, Ashutosh; Olson, David H.; Kotsonis, George N.; Stan, Gheorghe; Brenner, Donald W.; Maria, Jon-Paul; Hopkins, Patrick E. Charge-Induced Disorder Controls the Thermal Conductivity of Entropy-Stabilized Oxides. Advanced Materials. December 2018, 30 (51): 1805004. Bibcode:2018AdM....3005004B. ISSN 0935-9648. PMC 9486463可免费查阅. PMID 30368943. doi:10.1002/adma.201805004 (英语). 
  17. ^ Meisenheimer, P. B.; Kratofil, T. J.; Heron, J. T. Giant Enhancement of Exchange Coupling in Entropy-Stabilized Oxide Heterostructures. Scientific Reports. 2017-10-17, 7 (1): 13344. Bibcode:2017NatSR...713344M. ISSN 2045-2322. PMC 5645335可免费查阅. PMID 29042610. S2CID 205613906. doi:10.1038/s41598-017-13810-5可免费查阅 (英语). 
  18. ^ Yang, Zhao-Ming; Zhang, Kun; Qiu, Nan; Zhang, Hai-Bin; Wang, Yuan; Chen, Jian. Effects of helium implantation on mechanical properties of (Al 0.31 Cr 0.20 Fe 0.14 Ni 0.35 )O high entropy oxide films需要付费订阅. Chinese Physics B. April 2019, 28 (4): 046201. ISSN 1674-1056. S2CID 250758900. doi:10.1088/1674-1056/28/4/046201. 
  19. ^ Kirnbauer, Alexander; Spadt, Christoph; Koller, Christian M.; Kolozsvári, Szilard; Mayrhofer, Paul H. High-entropy oxide thin films based on Al–Cr–Nb–Ta–Ti需要付费订阅. Vacuum. 2019-10-01, 168: 108850. Bibcode:2019Vacuu.16808850K. ISSN 0042-207X. S2CID 201214183. doi:10.1016/j.vacuum.2019.108850 (英语). 
  20. ^ Lei, Zhifeng; Liu, Xiongjun; Li, Rui; Wang, Hui; Wu, Yuan; Lu, Zhaoping. Ultrastable metal oxide nanotube arrays achieved by entropy-stabilization engineering需要付费订阅. Scripta Materialia. 2018-03-15, 146: 340–343. ISSN 1359-6462. doi:10.1016/j.scriptamat.2017.12.025 (英语). 
  21. ^ Ren, Xiaomin; Tian, Zhilin; Zhang, Jie; Wang, Jingyang. Equiatomic quaternary (Y1/4Ho1/4Er1/4Yb1/4)2SiO5 silicate: A perspective multifunctional thermal and environmental barrier coating material需要付费订阅. Scripta Materialia. 2019-07-15, 168: 47–50. ISSN 1359-6462. S2CID 150218458. doi:10.1016/j.scriptamat.2019.04.018 (英语). 
  22. ^ Anandkumar, Mariappan; Bhattacharya, Saswata; Deshpande, Atul Suresh. Low temperature synthesis and characterization of single phase multi-component fluorite oxide nanoparticle sols. RSC Advances. 2019-08-23, 9 (46): 26825–26830. Bibcode:2019RSCAd...926825A. ISSN 2046-2069. PMC 9070433可免费查阅. PMID 35528557. doi:10.1039/C9RA04636D (英语). 
  23. ^ 23.0 23.1 Dąbrowa, Juliusz; Stygar, Mirosław; Mikuła, Andrzej; Knapik, Arkadiusz; Mroczka, Krzysztof; Tejchman, Waldemar; Danielewski, Marek; Martin, Manfred. Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure需要付费订阅. Materials Letters. 2018-04-01, 216: 32–36. ISSN 0167-577X. doi:10.1016/j.matlet.2017.12.148 (英语). 
  24. ^ 24.0 24.1 Jiang, Sicong; Hu, Tao; Gild, Joshua; Zhou, Naixie; Nie, Jiuyuan; Qin, Mingde; Harrington, Tyler; Vecchio, Kenneth; Luo, Jian. A new class of high-entropy perovskite oxides需要付费订阅. Scripta Materialia. 2018-01-01, 142: 116–120 [2025-07-01]. ISSN 1359-6462. doi:10.1016/j.scriptamat.2017.08.040. (原始内容存档于2023-10-04) (英语). 
  25. ^ 25.0 25.1 Teng, Zhen; Zhu, Lini; Tan, Yongqiang; Zeng, Sifan; Xia, Yuanhua; Wang, Yiguang; Zhang, Haibin. Synthesis and structures of high-entropy pyrochlore oxides需要付费订阅. Journal of the European Ceramic Society. 2020-04-01, 40 (4): 1639–1643. ISSN 0955-2219. S2CID 214404247. doi:10.1016/j.jeurceramsoc.2019.12.008 (英语). 
  26. ^ 26.0 26.1 Chen, Kepi; Pei, Xintong; Tang, Lei; Cheng, Haoran; Li, Zemin; Li, Cuiwei; Zhang, Xiaowen; An, Linan. A five-component entropy-stabilized fluorite oxide. Journal of the European Ceramic Society. 2018-09-01, 38 (11): 4161–4164. ISSN 0955-2219. S2CID 102857005. doi:10.1016/j.jeurceramsoc.2018.04.063可免费查阅 (英语). 
  27. ^ Sarkar, Abhishek; Djenadic, Ruzica; Wang, Di; Hein, Christina; Kautenburger, Ralf; Clemens, Oliver; Hahn, Horst. Rare earth and transition metal based entropy stabilised perovskite type oxides. Journal of the European Ceramic Society. 2018-05-01, 38 (5): 2318–2327. ISSN 0955-2219. doi:10.1016/j.jeurceramsoc.2017.12.058 (英语). 
  28. ^ Witte, Ralf; Sarkar, Abhishek; Kruk, Robert; Eggert, Benedikt; Brand, Richard A.; Wende, Heiko; Hahn, Horst. High-entropy oxides: An emerging prospect for magnetic rare-earth transition metal perovskites. Physical Review Materials. 2019-03-13, 3 (3): 034406. Bibcode:2019PhRvM...3c4406W. S2CID 118925048. arXiv:1901.02395可免费查阅. doi:10.1103/PhysRevMaterials.3.034406. 
  29. ^ Anandkumar, Mariappan; Bhattacharya, Saswata; Deshpande, Atul Suresh. Low temperature synthesis and characterization of single phase multi-component fluorite oxide nanoparticle sols. RSC Advances. 2019-08-23, 9 (46): 26825–26830. Bibcode:2019RSCAd...926825A. ISSN 2046-2069. PMC 9070433可免费查阅. PMID 35528557. doi:10.1039/C9RA04636D (英语). 
  30. ^ Sarkar, Abhishek; Velasco, Leonardo; Wang, Di; Wang, Quingsong; Talasila, Gopichand; de Biasi, Lea; Kübel, Christian; Brezeniski, Torsten; Battacharya, Subramshu S.; Hanh, Horst; Breitung, Ben. High entropy oxides for reversible energy storage. Nature Communications. 2018, 9 (1): 3400. Bibcode:2018NatCo...9.3400S. PMC 6109100可免费查阅. PMID 30143625. doi:10.1038/s41467-018-05774-5. 
  31. ^ Béradan, David; Franger, Sylvain; Dragoe, Diana; Meena, Arun Kuman; Dragoe, Nita. Colossal dielectric constant in high entropy oxides. Physica Status Solidi RRL. 2016, 10 (4): 328–333. Bibcode:2016PSSRR..10..328B. S2CID 101808600. arXiv:1602.07842可免费查阅. doi:10.1002/pssr.201600043. 
  32. ^ Chen, Hao; Zhang, Pengfei; Peng, Honggeng; Abney, Carter W.; Jie, Kecheng; Liu, Xiaoming; Chi, Miaofang; Dai, Sheng. Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability. Journal of Materials Chemistry A. 2018, 6 (24): 11129. doi:10.1039/c8ta01772g. 
  33. ^ Fracchia, Martina; Ghigna, Paolo; Pozzi, Tommaso; Anselmi Tamburini, Umberto; Colombo, Valentina; Braglia, Luca; Torelli, Piero. Stabilization by Configurational Entropy of the Cu(II) Active Site during CO Oxidation on Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O. Journal of Physical Chemistry Letters. 2020, 11 (9): 3589–3593. PMC 8007101可免费查阅. PMID 32309955. doi:10.1021/acs.jpclett.0c00602可免费查阅. 
  34. ^ Liu, Ruiheng; Chen, Hongyi; Zhao, Kunpeng; Qin, Yuting; Jiang, Binbin; Zhang, Tiansong; Sha, Gang; Shi, Xun; Uher, Ctirad; Zhang, Wenqing; Chen, Lidong. Entropy as a Gene-Like Performance Indicator Promoting Thermoelectric Materials. Advanced Materials. October 2017, 29 (38): 1702712. Bibcode:2017AdM....2902712L. PMID 28833741. S2CID 20987488. doi:10.1002/adma.201702712. hdl:2027.42/138909可免费查阅 (英语). 
  35. ^ 35.0 35.1 Braun, Jeffrey L.; Rost, Christina M.; Lim, Mina; Giri, Ashutosh; Olson, David H.; Kotsonis, George N.; Stan, Gheorghe; Brenner, Donald W.; Maria, Jon-Paul; Hopkins, Patrick E. Charge-Induced Disorder Controls the Thermal Conductivity of Entropy-Stabilized Oxides. Advanced Materials. December 2018, 30 (51): 1805004. Bibcode:2018AdM....3005004B. ISSN 0935-9648. PMC 9486463可免费查阅. PMID 30368943. doi:10.1002/adma.201805004 (英语). 
  36. ^ Gild, Joshua; Samiee, Mojtaba; Braun, Jeffrey L.; Harrington, Tyler; Vega, Heidy; Hopkins, Patrick E.; Vecchio, Kenneth; Luo, Jian. High-entropy fluorite oxides. Journal of the European Ceramic Society. 2018-08-01, 38 (10): 3578–3584. ISSN 0955-2219. S2CID 103888713. doi:10.1016/j.jeurceramsoc.2018.04.010可免费查阅 (英语). 
  37. ^ Johnstone, Graham H. J.; González-Rivas, Mario U.; Taddei, Keith M.; Sutarto, Ronny; Sawatzky, George A.; Green, Robert J.; Oudah, Mohamed; Hallas, Alannah M. Entropy Engineering and Tunable Magnetic Order in the Spinel High-Entropy Oxide. Journal of the American Chemical Society. 2022-11-16, 144 (45): 20590–20600. Bibcode:2022JAChS.14420590J. ISSN 0002-7863. OSTI 1923148. PMID 36321637. S2CID 253258048. arXiv:2211.15798可免费查阅. doi:10.1021/jacs.2c06768 (英语). 
  38. ^ Musicó, Brianna; Wright, Quinton; Ward, T. Zac; Grutter, Alexander; Arenholz, Elke; Gilbert, Dustin; Mandrus, David; Keppens, Veerle. Tunable magnetic ordering through cation selection in entropic spinel oxides. Physical Review Materials. 2019-10-21, 3 (10): 104416. Bibcode:2019PhRvM...3j4416M. ISSN 2475-9953. OSTI 1606826. S2CID 210803956. doi:10.1103/physrevmaterials.3.104416. 
  39. ^ Pan, Yingtong; Liu, Ji-Xuan; Tu, Tian-Zhe; Wang, Wenzhong; Zhang, Guo-Jun. High-entropy oxides for catalysis: A diamond in the rough需要付费订阅. Chemical Engineering Journal. 2023-01-01, 451: 138659. Bibcode:2023ChEnJ.45138659P. ISSN 1385-8947. S2CID 251658133. doi:10.1016/j.cej.2022.138659 (英语). 
  40. ^ 40.0 40.1 Luo, Xuewei; Huang, Ruiqi; Xu, Chunhui; Huang, Shuo; Hou, Shuen; Jin, Hongyun. Designing high-entropy rare-earth zirconates with tunable thermophysical properties for thermal barrier coatings需要付费订阅. Journal of Alloys and Compounds. 2022-12-10, 926: 166714. ISSN 0925-8388. S2CID 251455931. doi:10.1016/j.jallcom.2022.166714 (英语). 
  41. ^ Cao, X. Q.; Vassen, R.; Stoever, D. Ceramic materials for thermal barrier coatings需要付费订阅. Journal of the European Ceramic Society. 2004-01-01, 24 (1): 1–10. ISSN 0955-2219. doi:10.1016/S0955-2219(03)00129-8 (英语). 
  42. ^ Riley, Christopher; De La Riva, Andrew; Park, James Eujin; Percival, Stephen J.; Benavidez, Angelica; Coker, Eric N.; Aidun, Ruby E.; Paisley, Elizabeth A.; Datye, Abhaya; Chou, Stanley S. A High Entropy Oxide Designed to Catalyze CO Oxidation Without Precious Metals需要付费订阅. ACS Applied Materials & Interfaces. 2021-02-24, 13 (7): 8120–8128. ISSN 1944-8244. doi:10.1021/acsami.0c17446. 
  43. ^ Zi-Yu, Liu; Yu, Liu; Yujie, Xu; Hualiang, Zhang; Zongping, Shao; Zhenbin, Wang; Haisheng, Chen. Novel high-entropy oxides for energy storage and conversion: From fundamentals to practical applications. Green Energy & Environment. 2023-05-06, 8 (5): 1341–1357. Bibcode:2023GrEE....8.1341L. ISSN 2468-0257. doi:10.1016/j.gee.2023.04.007可免费查阅 (英语). 
  44. ^ Meng, Guo; Yufeng, Liu; Fengnian, Zhang; Fuhao, Cheng; Chufei, Cheng; Yang, Miao; Feng, Gao; Jun, Yu. Inactive Al3+ -doped La(CoCrFeMnNiAlx)1/(5+x)O3 high-entropy perovskite oxides as high performance supercapacitor electrodes. Journal of Advanced Ceramics. 2022-04-20, 11 (5): 742–753 [2025-07-01]. ISSN 2226-4108. doi:10.1007/s40145-022-0568-4可免费查阅. (原始内容存档于2024-07-12) (英语). 
  45. ^ Haoshan, Nan; Shuhui, Lv; Zijin, Xu; Yu, Feng; Yuxin, Zhou; Miao, Liu; Tianle, Wang; Xiaojuan, Liu. Inducing the cocktail effect in yolk-shell high-entropy perovskite oxides using an electronic structural design for improved electrochemical applications需要付费订阅. Chemical Engineering Journal. 2023-01-15, 452: 139501. Bibcode:2023ChEnJ.45239501N. ISSN 1385-8947. doi:10.1016/j.cej.2022.139501 (英语). 
  46. ^ Pikalova, E. Y.; Kalilina, E. G.; Pikalova, N.S.; Filonova, E. A. High-Entropy Materials in SOFC Technology: Theoretical Foundations for Their Creation, Features of Synthesis, and Recent Achievements.. Materials. 2022-12-08, 15 (24): 8783. Bibcode:2022Mate...15.8783P. PMC 9781791可免费查阅. PMID 36556589. doi:10.3390/ma15248783可免费查阅 (英语). 
  47. ^ 47.0 47.1 47.2 Brahlek, Matthew; Gazda, Maria; Keppens, Veerle; Mazza, Alessandro R.; McCormack, Scott J.; Mielewczyk-Gryń, Aleksandra; Musico, Brianna; Page, Katharine; Rost, Christina M.; Sinnott, Susan B.; Toher, Cormac; Ward, Thomas Z.; Yamamoto, Ayako. What is in a name: Defining "high entropy" oxides. APL Materials. 2022-11-01, 10 (11): 110902. Bibcode:2022APLM...10k0902B. S2CID 251881696. arXiv:2208.12709可免费查阅. doi:10.1063/5.0122727可免费查阅. 
  48. ^ Sarkar, Abhishek; Wang, Qingsong; Schiele, Alexander; Chellali, Mohammed Reda; Bhattacharya, Subramshu S.; Wang, Di; Brezesinski, Torsten; Hahn, Horst; Velasco, Leonardo; Breitung, Ben. High-Entropy Oxides: Fundamental Aspects and Electrochemical Properties. Advanced Materials. June 2019, 31 (26): 1806236. Bibcode:2019AdM....3106236S. ISSN 0935-9648. PMID 30838717. S2CID 73472211. doi:10.1002/adma.201806236可免费查阅 (英语).