金属辅助化学蚀刻

金属辅助化学刻蚀(Metal Assisted Chemical Etching,简称MACE)是一种利用金属催化剂对半导体(主要为硅)进行湿法化学蚀刻的工艺。[1]通常,将金属以薄膜或纳米粒子的形式沉积在半导体表面,随后将该金属覆盖的半导体浸入含有氧化剂和氢氟酸的刻蚀溶液中。在这一过程中,金属催化剂促进氧化剂的还原反应,从而加速硅的溶解。在大多数研究中,这种溶解速率的提升具有空间限制性,即仅在金属粒子附近的区域刻蚀速率显著增加。这一效应最终会在半导体内部形成垂直方向的直孔结构。因此,通过在半导体表面预先设计金属图案,可以将该图案直接转移至基底之中。[2]
发展历史
[编辑]MACE是半导体工程领域中的一项相对较新的技术,目前尚未广泛应用于工业生产。最早的MACE实验是在部分被铝覆盖的硅片上进行的,该硅片被浸入刻蚀溶液后,其刻蚀速率明显高于未覆盖金属的裸硅片。[3]这一初步尝试常被称为电化学刻蚀(galvanic etching),而非现代意义上的金属辅助化学刻蚀。[來源請求]
后续研究发现,将一层贵金属薄膜沉积在硅片表面同样可以局部提高刻蚀速率。特别地,人们观察到,当样品浸入含氧化剂与氢氟酸的刻蚀液中时,贵金属颗粒会逐渐“下沉”进入硅基体中。[4]这一方法现已广泛称为硅的金属辅助化学刻蚀。除了硅之外,其他半导体材料如碳化硅[5]和氮化鎵[6]也被成功地应用于MACE工艺。但现阶段的研究主要集中于硅材料的刻蚀。
研究表明,多种金属材料均可在 MACE 过程中充当催化剂,包括贵金属如金[7]、铂[8]、钯[9]和银[10],以及一些卑金屬如铁[11]、镍[12][13]、铜[14]和铝[15]。
理论
[编辑]
MACE的一些原理已被科学界普遍接受,而另一些仍在研究讨论中。[16]普遍认可的观点是,贵金属粒子催化了氧化剂的还原反应,从而使金属粒子带有多余的正电荷,并最终将这些正电荷转移至硅基底。在半导体中,这些正电荷表现为价带中的空穴(h+),从化学角度看则可视为由于电子的移除导致的Si–Si键弱化。这些被削弱的化学键可被HF或H2O等亲核试剂攻击,导致贵金属粒子周围区域的硅基底发生溶解。[來源請求]
从热力学角度看,MACE过程之所以能够进行,是因为所用氧化剂(如过氧化氢或高锰酸钾)对应的氧化还原对的电位低于硅价带边的电化学能级。换言之,刻蚀液中的电子电化学势(因氧化剂存在而降低)低于硅中电子的电化学势,因此电子会自硅中转移出去。正电荷的积累最终促使氢氟酸对硅基底的刻蚀发生。[16]
MACE涉及多个化学反应过程。在金属粒子表面,氧化剂被还原。以过氧化氢为例,其还原反应可表示为:
- H
2O
2 + 2 H+
→ 2 H
2O + 2 h+
产生的空穴(h+)随后被消耗于硅的溶解过程中。尽管溶解反应可能有多种形式,以下为其中一种代表性反应:
- Si + 6 HF + 4 h+
→ SiF
62-
+ 6 H+
目前对MACE机制仍有一些不确定性。例如,上述模型假设金属粒子需与硅基底保持接触,但这与刻蚀液存在于金属粒子下方的情况有所矛盾。对此,有研究提出,MACE过程中可能存在金属的溶解与再沉积现象。具体而言,金属粒子的一部分金属离子可能被氧化溶解,随后在硅表面通过还原反应重新沉积。如此一来,金属粒子(或更大的贵金属薄膜)既可部分与基底保持接触,又可在金属下方实现刻蚀。[17]
在直孔附近,实验还观察到存在一个位于孔隙间的微孔结构区域。一般认为,这是由于部分空穴从金属粒子扩散至远离其表面的区域,并在那里引发了刻蚀作用。[18]此类现象的出现依赖于基底的掺杂类型以及所使用的贵金属粒子类型。因此,有学者提出该微孔结构的形成与金属/硅界面所形成的势垒类型有关。若存在能带上弯(upward band bending),耗尽层中的电场将指向金属,空穴无法向硅内部扩散,故不会形成微孔结构。若存在能带下弯(downward band bending),空穴可进入硅体材料内部并导致远离界面的区域也发生刻蚀。[19]
MACE实验流程
[编辑]
如上所述,MACE工艺需要在硅基底表面沉积金属粒子或金属薄膜。这可以通过溅射沉积或热蒸发等方法实现。[20]若想从连续薄膜中获得粒子,可采用热退火诱导的薄膜破裂(thermal dewetting)技术。[21]此类沉积工艺还可结合光刻技术,实现仅在特定区域沉积金属。[22]由于MACE是一种各向异性刻蚀工艺(仅在特定方向上进行刻蚀),预设计的金属图案可直接转印到硅基底中。另一种常见的金属沉积方式是化学镀,即通过贵金属离子在硅表面进行还原反应沉积金属粒子或薄膜。由于贵金属氧化还原对的电位低于硅的价带边,金属离子可从硅中提取电子(或注入空穴),从而在硅表面生成金属。[23]最终,在完成金属沉积后,将样品浸入含有氢氟酸和氧化剂的刻蚀液中。只要氧化剂与酸未被完全消耗,或样品未被取出,刻蚀反应将持续进行。
MACE应用
[编辑]
MACE 受到广泛研究的原因在于它能够实现完全各向异性的硅基底刻蚀,而这是其他传统湿法化学刻蚀方法所无法做到的。通常,在将硅基底浸入刻蚀液之前,会先在其表面覆盖一层保护材料,如光刻胶。然而,湿法刻蚀液在刻蚀时并无方向选择性,因此刻蚀过程往往是各向同性的。然而,在半导体工艺中,常常需要刻蚀出侧壁陡直的沟槽结构。这种需求通常借助气相工艺实现,如反应离子刻蚀,但这类工艺所需设备昂贵。而相比之下,MACE理论上也可以实现类似的陡直沟槽刻蚀,同时设备简单、成本低廉,因此具有极高的应用潜力。
多孔硅
[编辑]金属辅助化学蚀刻可以生产具有光致发光的多孔硅。
通过金属辅助化学刻蚀可以制备具有光致发光性能的多孔硅材料。
黑硅
[编辑]黑硅是经过表面改性的硅,是一种多孔硅。有几部作品使用 MACE 技术获取黑硅。黑硅的主要应用是太阳能。
黑硅是一种表面经过改性、具备特殊光学性能的多孔硅。已有多项研究[需要解释]采用MACE技术来制备黑硅。黑硅的主要应用领域是太阳能。[24][25]
黑砷化镓
[编辑]采用MACE工艺还可以制备具有光俘获能力的黑砷化镓材料。[26]
参考
[编辑]- ^ Progress in Controlled Fabrication Techniques and Applications of Silicon Nanowires Associated with Metal-assisted Chemical Etching. Chinese Journal of Applied Chemistry. 2013-11-01, 30 (11) [2025-04-05]. ISSN 1000-0518. doi:10.3724/SP.J.1095.2013.30048 (英语).
- ^ Huang, Zhipeng; Geyer, Nadine; Werner, Peter; de Boor, Johannes; Gösele, Ulrich. Metal-Assisted Chemical Etching of Silicon: A Review: In memory of Prof. Ulrich Gösele. Advanced Materials. 11 January 2011, 23 (2): 285–308. PMID 20859941. S2CID 205237664. doi:10.1002/adma.201001784.
- ^ Dimova-Malinovska, D; Sendova-Vassileva, M; Tzenov, N; Kamenova, M. Preparation of thin porous silicon layers by stain etching. Thin Solid Films. April 1997, 297 (1–2): 9–12. Bibcode:1997TSF...297....9D. doi:10.1016/S0040-6090(96)09434-5.
- ^ Li, X.; Bohn, P. W. Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Applied Physics Letters. 16 October 2000, 77 (16): 2572–2574. doi:10.1063/1.1319191
.
- ^ Leitgeb, Markus; Zellner, Christopher; Schneider, Michael; Schwab, Stefan; Hutter, Herbert; Schmid, Ulrich. Metal assisted photochemical etching of 4H silicon carbide. Journal of Physics D: Applied Physics. 1 November 2017, 50 (43): 435301. Bibcode:2017JPhD...50Q5301L. doi:10.1088/1361-6463/aa8942
.
- ^ Dı́az, Diego J.; Williamson, Todd L.; Adesida, Ilesanmi; Bohn, Paul W.; Molnar, Richard J. Morphology evolution and luminescence properties of porous GaN generated via Pt-assisted electroless etching of hydride vapor phase epitaxy GaN on sapphire. Journal of Applied Physics. 15 December 2003, 94 (12): 7526–7534. Bibcode:2003JAP....94.7526D. doi:10.1063/1.1628833.
- ^ Mikhael, Bechelany; Elise, Berodier; Xavier, Maeder; Sebastian, Schmitt; Johann, Michler; Laetitia, Philippe. New Silicon Architectures by Gold-Assisted Chemical Etching. ACS Applied Materials & Interfaces. 26 October 2011, 3 (10): 3866–3873. PMID 21882843. doi:10.1021/am200948p.
- ^ Tsujino, Kazuya; Matsumura, Michio. Helical Nanoholes Bored in Silicon by Wet Chemical Etching Using Platinum Nanoparticles as Catalyst. Electrochemical and Solid-State Letters. 2005, 8 (12): C193. doi:10.1149/1.2109347.
- ^ Chen, Jun-Ming; Chen, Chia-Yuan; Wong, C.P.; Chen, Chia-Yun. Inherent formation of porous p-type Si nanowires using palladium-assisted chemical etching. Applied Surface Science. January 2017, 392: 498–502. Bibcode:2017ApSS..392..498C. doi:10.1016/j.apsusc.2016.09.048.
- ^ Lee, Jung-In; Park, Soojin. High-performance porous silicon monoxide anodes synthesized via metal-assisted chemical etching. Nano Energy. January 2013, 2 (1): 146–152. Bibcode:2013NEne....2..146L. doi:10.1016/j.nanoen.2012.08.009.
- ^ Loni, A.; Barwick, D.; Batchelor, L.; Tunbridge, J.; Han, Y.; Li, Z. Y.; Canham, L. T. Extremely High Surface Area Metallurgical-Grade Porous Silicon Powder Prepared by Metal-Assisted Etching. Electrochemical and Solid-State Letters. 1 May 2011, 14 (5): K25–K27. doi:10.1149/1.3548513
.
- ^ Volovlikova, Olga V.; Gavrilov, S.A.; Lazarenko, P.I.; Kukin, A.V.; Dudin, A.A.; Tarhanov, A.K. Influence of Etching Regimes on the Reflectance of Black Silicon Films Formed by Ni-Assisted Chemical Etching. Key Engineering Materials. June 2019, 806: 24–29. S2CID 197607732. doi:10.4028/www.scientific.net/KEM.806.24.
- ^ Azeredo, B P; Sadhu, J; Ma, J; Jacobs, K; Kim, J; Lee, K; Eraker, J H; Li, X; Sinha, S; Fang, N; Ferreira, P. Silicon nanowires with controlled sidewall profile and roughness fabricated by thin-film dewetting and metal-assisted chemical etching. Nanotechnology. 7 June 2013, 24 (22): 225305. Bibcode:2013Nanot..24v5305A. PMID 23644697. S2CID 6072818. doi:10.1088/0957-4484/24/22/225305.
- ^ Qiu, Teng; Chu, Paul K. Self-selective electroless plating: An approach for fabrication of functional 1D nanomaterials. Materials Science and Engineering: R: Reports. May 2008, 61 (1–6): 59–77. doi:10.1016/j.mser.2008.03.001.
- ^ Uddin, Shahnawaz; Hashim, Md Roslan; Pakhuruddin, Mohd Zamir. Aluminium-assisted chemical etching for fabrication of black silicon. Materials Chemistry and Physics. June 2021, 265: 124469. S2CID 233542194. doi:10.1016/j.matchemphys.2021.124469.
- ^ 16.0 16.1 Huang, Zhipeng; Geyer, Nadine; Werner, Peter; de Boor, Johannes; Gösele, Ulrich. Metal-Assisted Chemical Etching of Silicon: A Review: In memory of Prof. Ulrich Gösele. Advanced Materials. 11 January 2011, 23 (2): 285–308. PMID 20859941. S2CID 205237664. doi:10.1002/adma.201001784.Huang, Zhipeng; Geyer, Nadine; Werner, Peter; de Boor, Johannes; Gösele, Ulrich (11 January 2011). "Metal-Assisted Chemical Etching of Silicon: A Review: In memory of Prof. Ulrich Gösele". Advanced Materials. 23 (2): 285–308. doi:10.1002/adma.201001784. PMID 20859941 (页面存档备份,存于互联网档案馆). S2CID 205237664.
- ^ Geyer, Nadine; Fuhrmann, Bodo; Huang, Zhipeng; de Boor, Johannes; Leipner, Hartmut S.; Werner, Peter. Model for the Mass Transport during Metal-Assisted Chemical Etching with Contiguous Metal Films As Catalysts. The Journal of Physical Chemistry C. 21 June 2012, 116 (24): 13446–13451. doi:10.1021/jp3034227.
- ^ Li, Xiuling. Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics. Current Opinion in Solid State and Materials Science. April 2012, 16 (2): 71–81. Bibcode:2012COSSM..16...71L. doi:10.1016/j.cossms.2011.11.002.
- ^ Lai, Ruby A.; Hymel, Thomas M.; Narasimhan, Vijay K.; Cui, Yi. Schottky Barrier Catalysis Mechanism in Metal-Assisted Chemical Etching of Silicon. ACS Applied Materials & Interfaces. 13 April 2016, 8 (14): 8875–8879. OSTI 1579822. PMID 27018712. doi:10.1021/acsami.6b01020.
- ^ Kabalan, Amal. "A Comparative Study on the Effects of Passivation Methods on the Carrier Lifetime of RIE and MACE Silicon Micropillars." Applied Sciences 9.9 (2019): 1804.
- ^ Backes, A., et al. "Influence of metallic catalyst and doping level on the metal assisted chemical etching of silicon." Scripta Materialia 114 (2016): 27-30.
- ^ Chang, Shih‐Wei, et al. "Densely packed arrays of ultra‐high‐aspect‐ratio silicon nanowires fabricated using block‐copolymer lithography and metal‐assisted etching." Advanced functional materials 19.15 (2009): 2495-2500.
- ^ Smith, Zachary R., Rosemary L. Smith, and Scott D. Collins. "Mechanism of nanowire formation in metal assisted chemical etching." Electrochimica Acta 92 (2013): 139-147.
- ^ Volovlikova, Olga V.; Gavrilov, S.A.; Lazarenko, P.I.; Kukin, A.V.; Dudin, A.A.; Tarhanov, A.K. Influence of Etching Regimes on the Reflectance of Black Silicon Films Formed by Ni-Assisted Chemical Etching. Key Engineering Materials. June 2019, 806: 24–29. S2CID 197607732. doi:10.4028/www.scientific.net/KEM.806.24.Volovlikova, Olga V.; Gavrilov, S.A.; Lazarenko, P.I.; Kukin, A.V.; Dudin, A.A.; Tarhanov, A.K. (June 2019). "Influence of Etching Regimes on the Reflectance of Black Silicon Films Formed by Ni-Assisted Chemical Etching". Key Engineering Materials. 806: 24–29. doi:10.4028/www.scientific.net/KEM.806.24. S2CID 197607732.
- ^ Azeredo, B P; Sadhu, J; Ma, J; Jacobs, K; Kim, J; Lee, K; Eraker, J H; Li, X; Sinha, S; Fang, N; Ferreira, P. Silicon nanowires with controlled sidewall profile and roughness fabricated by thin-film dewetting and metal-assisted chemical etching. Nanotechnology. 7 June 2013, 24 (22): 225305. Bibcode:2013Nanot..24v5305A. PMID 23644697. S2CID 6072818. doi:10.1088/0957-4484/24/22/225305.Azeredo, B P; Sadhu, J; Ma, J; Jacobs, K; Kim, J; Lee, K; Eraker, J H; Li, X; Sinha, S; Fang, N; Ferreira, P; Hsu, K (7 June 2013). "Silicon nanowires with controlled sidewall profile and roughness fabricated by thin-film dewetting and metal-assisted chemical etching". Nanotechnology. 24 (22): 225305. Bibcode:2013Nanot..24v5305A. doi:10.1088/0957-4484/24/22/225305. PMID 23644697 (页面存档备份,存于互联网档案馆). S2CID 6072818.
- ^ Lova, Paola; Robbiano, Valentina; Cacialli, Franco; Comoretto, Davide; Soci, Cesare. Black GaAs by Metal-Assisted Chemical Etching. ACS Applied Materials & Interfaces. 2018, 10 (39): 33434–33440. PMID 30191706. doi:10.1021/acsami.8b10370
.