斯托納姆數
外观
斯托納姆數(Stoneham numbers)是一種特別的實數,得名自數學家李查·斯托納姆(Richard G. Stoneham, 1920–1996)。對於互質且大於1的整數b和c,可以定義斯托納姆數αb,c 如下:
斯托納姆在1973年證明只要c為奇質數,且b是c2的原根,則斯托納姆數是以b為底的正規數。Bailey和Crandall在2002年證明若b, c > 1 且互質,αb,c就會是以b為底的正規數[1]。
參考資料
[编辑]- ^ Bailey, David H.; Crandall, Richard E. Random Generators and Normal Numbers. Experimental Mathematics. 2002, 11 (4): 527–546. S2CID 8944421. doi:10.1080/10586458.2002.10504704.
- Bugeaud, Yann. Distribution modulo one and Diophantine approximation. Cambridge Tracts in Mathematics 193. Cambridge: Cambridge University Press. 2012. ISBN 978-0-521-11169-0. Zbl 1260.11001.
- Stoneham, R.G. On absolute $(j,ε)$-normality in the rational fractions with applications to normal numbers. Acta Arithmetica. 1973, 22: 277–286. Zbl 0276.10028.
- Stoneham, R.G. On the uniform ε-distribution of residues within the periods of rational fractions with applications to normal numbers. Acta Arithmetica. 1973, 22: 371–389. Zbl 0276.10029.
![]() | 这是一篇關於数论的小作品。您可以通过编辑或修订扩充其内容。 |