摘要
Display
en
01) Coordinate time 08) Axial radius of gyration 15) Axial angular momentum 22) Framedragging delayed angular velocity
02) Proper time 09) Poloidial radius of gyration 16) Polar angular momentum 23) Framedragging local velocity
03) Total time dilation 10) Radial coefficient 17) Radial momentum 24) Framedragging observed velocity
04) Gravitational time dilation 11) E kinetic 18) Cartesian radius 25) Observed particle velocity
05) Boyer Lindquist radius 12) Potential energy component 19) Cartesian X-axis 26) Local escape velocity
06) BL Longitude in radians 13) Total particle energy 20) Cartesian Y-axis 27) Delayed particle velocity
07) BL Latitude in radians 14) Carter Constant 21) Cartesian Z-axis 28) Local particle velocity
de
01) Koordinatenzeit 08) Axialer Gyrationsradius 15) Axialer Drehimpuls 22) Framedrag verzögerte Winkelgeschwindigkeit
02) Eigenzeit des Testpartikels 09) Poloidialer Gyrationsradius 16) Polarer Drehimpuls 23) Framedrag lokale Transversalgeschwindigkeit
03) Insgesamte Zeitdilatation 10) Radialer Vorfaktor 17) Radialer Impuls 24) Framedrag beobachtete Transversalgeschwindigkeit
04) Gravitative Zeitdilatation 11) E kinetisch 18) Kartesischer Radius 25) Beobachtete Totalgeschwindigkeit
05) Boyer Lindquist Radius 12) Potentielle Energie 19) Kartesische X-Achse 26) Lokale Fluchtgeschwindigkeit
06) BL Längengrad in Radianten 13) Totale Energie 20) Kartesische Y-Achse 27) Verzögerte Geschwindigkeit
07) BL Breitengrad in Radianten 14) Carter Konstante 21) Kartesische Z-Achse 28) Lokale Geschwindigkeit relativ zum ZAMO
en
For an english version of the equations of motions click here
de
Alle Formeln sind in natürlichen Einheiten:
G
=
M
=
c
=
1
{\displaystyle {\rm {G=M=c=1}}}
Koordinatenzeitableitung nach der Eigenzeit (dt/dτ):
t
˙
=
2
E
r
(
a
2
+
r
2
)
−
2
a
L
z
r
Δ
Σ
+
E
=
ς
1
−
v
2
{\displaystyle {\rm {{\dot {t}}={\frac {2\ E\ r\ \left(a^{2}+r^{2}\right)-2\ a\ L_{z}\ r}{\Delta \ \Sigma }}+E={\frac {\varsigma }{\sqrt {1-v^{2}}}}}}}
Radialkoordinatenableitung (dr/dτ):
r
˙
=
Δ
p
r
Σ
{\displaystyle {\rm {{\dot {r}}={\frac {\Delta \ p_{r}}{\Sigma }}}}}
Radiale Impulskomponentenableitung:
p
˙
r
=
(
r
−
1
)
(
μ
(
a
2
+
r
2
)
−
k
)
+
2
E
2
r
(
a
2
+
r
2
)
−
2
a
E
L
z
+
Δ
μ
r
Δ
Σ
−
2
p
r
2
(
r
−
1
)
Σ
{\displaystyle {\rm {{\dot {p}}_{r}={\frac {(r-1)\left(\mu \ \left(a^{2}+r^{2}\right)-k\right)+2\ E^{2}\ r\left(a^{2}+r^{2}\right)-2\ a\ E\ L_{z}+\Delta \ \mu \ r}{\Delta \ \Sigma }}-{\frac {2\ p_{r}^{2}\ (r-1)}{\Sigma }}}}}
Zusammenhang mit der lokalen Geschwindigkeit:
p
r
=
v
r
1
+
μ
v
2
Σ
Δ
{\displaystyle {\rm {p_{r}={\frac {v_{r}}{\sqrt {1+\mu \ v^{2}}}}{\sqrt {\frac {\Sigma }{\Delta }}}}}}
Breitengradableitung (dθ/dτ):
θ
˙
=
p
θ
Σ
{\displaystyle {\rm {{\dot {\theta }}={\frac {p_{\theta }}{\Sigma }}}}}
Drehimpulsableitung auf der θ-Achse (pθ/dτ):
p
˙
θ
=
sin
θ
cos
θ
(
L
z
2
sin
4
θ
−
a
2
(
E
2
+
μ
)
)
Σ
{\displaystyle {\rm {{\dot {p}}_{\theta }={\frac {\sin \theta \ \cos \theta \left({\frac {L_{z}^{2}}{\sin ^{4}\theta }}-a^{2}\left(E^{2}+\mu \right)\right)}{\Sigma }}}}}
Zusammenhang mit der lokalen Geschwindigkeit:
p
θ
=
v
θ
Σ
1
+
μ
v
2
{\displaystyle {\rm {p_{\theta }={\frac {v_{\theta }\ {\sqrt {\Sigma }}}{\sqrt {1+\mu \ v^{2}}}}}}}
Längengradableitung (dФ/dτ):
ϕ
˙
=
2
a
E
r
+
L
z
csc
2
θ
(
Σ
−
2
r
)
Δ
Σ
{\displaystyle {\rm {{\dot {\phi }}={\frac {2\ a\ E\ r+L_{z}\ \csc ^{2}\theta \ (\Sigma -2r)}{\Delta \ \Sigma }}}}}
Drehimpulsableitung auf der Ф-Achse (pФ/dτ):
p
˙
ϕ
=
0
{\displaystyle {\rm {{\dot {p}}_{\phi }=0}}}
Erhaltungsgröße Carter-Konstante:
Q
=
p
θ
2
+
cos
2
θ
(
a
2
(
μ
2
−
E
2
)
+
L
z
2
sin
2
θ
)
=
a
2
(
μ
2
−
E
2
)
sin
2
I
+
L
z
2
tan
2
I
{\displaystyle {\rm {Q=p_{\theta }^{2}+\cos ^{2}\theta \left(a^{2}(\mu ^{2}-E^{2})+{\frac {L_{z}^{2}}{\sin ^{2}\theta }}\right)=a^{2}\ (\mu ^{2}-E^{2})\ \sin ^{2}I+L_{z}^{2}\ \tan ^{2}I}}}
Daraus abgeleitete Erhaltungsgröße:
k
=
a
2
(
E
2
+
μ
)
+
L
z
2
+
Q
{\displaystyle {\rm {k=a^{2}\left(E^{2}+\mu \right)+L_{z}^{2}+Q}}}
Erhaltungsgröße Gesamtenergie:
E
=
(
Σ
−
2
r
)
(
θ
˙
2
Δ
Σ
+
r
˙
2
Σ
−
Δ
μ
)
Δ
Σ
+
φ
˙
2
Δ
sin
2
θ
=
Δ
Σ
(
1
+
μ
v
2
)
χ
+
Ω
L
z
{\displaystyle {\rm {E={\sqrt {{\frac {(\Sigma -2\ r)\left({\dot {\theta }}^{2}\ \Delta \ \Sigma +{\dot {r}}^{2}\ \Sigma -\Delta \ \mu \right)}{\Delta \ \Sigma }}+{\dot {\varphi }}^{2}\ \Delta \ \sin ^{2}\theta }}={\sqrt {\frac {\Delta \ \Sigma }{(1+\mu \ v^{2})\ \chi }}}+\Omega \ L_{z}}}}
Erhaltungsgröße Drehimpuls entlang Ф:
L
z
=
sin
2
θ
(
ϕ
˙
Δ
Σ
−
2
a
E
r
)
Σ
−
2
r
=
v
ϕ
R
¯
1
+
μ
v
2
{\displaystyle {\rm {L_{z}={\frac {\sin ^{2}\theta \ ({\dot {\phi }}\ \Delta \ \Sigma -2\ a\ E\ r)}{\Sigma -2\ r}}={\frac {v_{\phi }\ {\bar {R}}}{\sqrt {1+\mu \ v^{2}}}}}}}
mit dem Radius der Gyration
R
¯
=
χ
Σ
sin
θ
{\displaystyle {\rm {{\bar {R}}={\sqrt {\frac {\chi }{\Sigma }}}\ \sin \theta }}}
Frame Dragging Winkelableitung (dФ/dt):
ω
=
2
a
r
χ
{\displaystyle {\rm {\omega ={\frac {2\ a\ r}{\chi }}}}}
Gravitative Zeitdilatationskomponente (dt/dτ):
ς
=
χ
Δ
Σ
{\displaystyle {\rm {\varsigma ={\sqrt {\frac {\chi }{\Delta \ \Sigma }}}}}}
Lokale Geschwindigkeit auf der r-Achse:
v
r
1
+
μ
v
2
=
r
˙
Σ
Δ
{\displaystyle {\rm {{\frac {v_{r}}{\sqrt {1+\mu \ v^{2}}}}={\dot {r}}\ {\sqrt {\frac {\Sigma }{\Delta }}}}}}
Lokale Geschwindigkeit auf der θ-Achse:
v
θ
Σ
1
+
μ
v
2
=
θ
˙
Σ
{\displaystyle {\rm {{\frac {v_{\theta }\ {\sqrt {\Sigma }}}{\sqrt {1+\mu \ v^{2}}}}={\dot {\theta }}\ \Sigma }}}
Lokale Geschwindigkeit auf der Ф-Achse:
v
ϕ
1
+
μ
v
2
=
L
z
R
¯
ϕ
{\displaystyle {\frac {\rm {v_{\phi }}}{\sqrt {1+\mu \ {\rm {v^{2}}}}}}={\frac {\rm {L_{z}}}{\rm {{\bar {R}}_{\phi }}}}}
Kartesische Koordinaten:
x
=
r
2
+
a
2
sin
θ
cos
ϕ
,
y
=
r
2
+
a
2
sin
θ
sin
ϕ
,
z
=
r
cos
θ
{\displaystyle {\rm {x={\sqrt {r^{2}+a^{2}}}\sin \theta \ \cos \phi \ ,\ y={\sqrt {r^{2}+a^{2}}}\sin \theta \ \sin \phi \ ,\ z=r\cos \theta \quad }}}
Beobachtete Geschwindigkeit:
β
=
(
d
x
/
d
t
)
2
+
(
d
y
/
d
t
)
2
+
(
d
z
/
d
t
)
2
{\displaystyle {\rm {\beta ={\sqrt {(dx/dt)^{2}+(dy/dt)^{2}+(dz/dt)^{2}}}}}}
Die radiale Fluchtgeschwindigkeit ergibt sich aus dem Verhältnis:
ς
=
1
/
1
−
v
e
s
c
2
→
v
e
s
c
=
ς
2
−
1
/
ς
{\displaystyle {\rm {\varsigma =1/{\sqrt {1-v_{\rm {esc}}^{2}}}\ \to \ v_{\rm {esc}}={\sqrt {\varsigma ^{2}-1}}/\varsigma }}}
zusammengefasste Terme:
Σ
=
a
2
cos
2
θ
+
r
2
,
Δ
=
a
2
+
r
2
−
2
r
,
χ
=
(
a
2
+
r
2
)
2
−
a
2
sin
2
θ
Δ
{\displaystyle {\rm {\Sigma =a^{2}\cos ^{2}\theta +r^{2}\ ,\ \ \Delta =a^{2}+r^{2}-2r\ ,\ \ \chi =\left(a^{2}+r^{2}\right)^{2}-a^{2}\ \sin ^{2}\theta \ \Delta }}}
Quellen:[ 1] [ 2] [ 3] [ 4] [ 5] [ 6]
Referenzen
↑ Pu, Yun, Younsi & Yoon: General-relativistic radiative transfer in Kerr spacetime , S. 2+
↑ Janna Levin & Gabe Perez-Giz: A Periodic Table for Black Hole Orbits , S. 30+
↑ Scott A. Hughes: Nearly horizon skimming orbits of Kerr black holes , S. 5+
↑ Janna Levin & Gabe Perez-Giz: The Phase Space Portrait , S. 2+
↑ Misner, Thorne & Wheeler (MTW): Die Bibel archive copy at the Wayback Machine , S. 897+
↑ Simon Tyran: Kerr Orbits / Gravitationslinsen
授權條款
您可以自由:
分享 – 複製、發佈和傳播本作品
重新修改 – 創作演繹作品
惟需遵照下列條件:
姓名標示 – 您必須指名出正確的製作者,和提供授權條款的連結,以及表示是否有對內容上做出變更。您可以用任何合理的方式來行動,但不得以任何方式表明授權條款是對您許可或是由您所使用。
相同方式分享 – 若要根據本素材進行再混合、轉換或創作,則必須以與原作相同或相容的授權 來發布您的作品。 https://creativecommons.org/licenses/by-sa/3.0/de/deed.en CC BY-SA 3.0 de Creative Commons Attribution-Share Alike 3.0 de true true
您可以自由:
分享 – 複製、發佈和傳播本作品
重新修改 – 創作演繹作品
惟需遵照下列條件:
姓名標示 – 您必須指名出正確的製作者,和提供授權條款的連結,以及表示是否有對內容上做出變更。您可以用任何合理的方式來行動,但不得以任何方式表明授權條款是對您許可或是由您所使用。
相同方式分享 – 若要根據本素材進行再混合、轉換或創作,則必須以與原作相同或相容的授權 來發布您的作品。 https://creativecommons.org/licenses/by-sa/3.0 CC BY-SA 3.0 Creative Commons Attribution-Share Alike 3.0 true true
已授權您依據自由軟體基金會 發行的無固定段落、封面文字和封底文字GNU自由文件授權條款 1.2版或任意後續版本,對本檔進行複製、傳播和/或修改。該協議的副本列在GNU自由文件授權條款 中。http://www.gnu.org/copyleft/fdl.html GFDL GNU Free Documentation License true true
Dateiverwendung in Wikipedia-Artikeln
英文 Orbit around a spinning Kerr black hole
德文 Orbit um ein rotierendes Kerr Schwarzloch