跳至內容

File:Fourier transform, Fourier series, DTFT, DFT.gif

頁面內容不支援其他語言。
這個檔案來自維基共享資源
維基百科,自由的百科全書
原始檔案 (1,128 × 672 像素,檔案大小:59 KB,MIME 類型:image/gif


摘要

描述
English: A Fourier transform and 3 variations caused by periodic sampling (at interval T) and/or periodic summation (at interval P) of the underlying time-domain function.
日期
來源 自己的作品
作者 Bob K
授權許可
(重用此檔案)
我,本作品的著作權持有者,決定用以下授權條款發佈本作品:
Creative Commons CC-Zero 此檔案於創用 CC CC0 1.0 通用公有領域貢獻宣告下分發。
在此宣告之下分發本作品者,已依據各國著作權法,在全世界放棄其對本作品所擁有的著作權及所有相關相似的法律權利,從而將本作品貢獻至公有領域。您可以複製、修改、分發和演示該作品,用於任何商業用途,所有這些都不需要請求授權。

其他版本 File:Variations_of_the_Fourier_transform.tif, Derivative works of this file:  Fourier transform, Fourier series, DTFT, DFT.svg,
File:Fourier transform, Fourier series, DTFT, DFT.svg是本檔案的向量版本。 如果品質不低,就應該優先使用該檔案,而非GIF檔案。

File:Fourier transform, Fourier series, DTFT, DFT.gif → File:Fourier transform, Fourier series, DTFT, DFT.svg

更多資訊請參閱Help:SVG/zh

其他語言
Alemannisch  العربية  беларуская (тарашкевіца)  български  বাংলা  català  нохчийн  čeština  dansk  Deutsch  Ελληνικά  English  British English  Esperanto  español  eesti  euskara  فارسی  suomi  français  Frysk  galego  Alemannisch  עברית  हिन्दी  hrvatski  magyar  հայերեն  Bahasa Indonesia  Ido  italiano  日本語  ქართული  한국어  lietuvių  македонски  മലയാളം  Bahasa Melayu  မြန်မာဘာသာ  norsk bokmål  Plattdüütsch  Nederlands  norsk nynorsk  norsk  occitan  polski  prūsiskan  português  português do Brasil  română  русский  sicilianu  Scots  slovenčina  slovenščina  српски / srpski  svenska  தமிழ்  ไทย  Türkçe  татарча / tatarça  українська  vèneto  Tiếng Việt  中文  中文(中国大陆)  中文(简体)  中文(繁體)  中文(马来西亚)  中文(新加坡)  中文(臺灣)  +/−
新SVG圖片

GIF開發
InfoField
 
本GIF graphic使用LibreOffice創作。
Octave/gnuplot source
InfoField
click to expand

This graphic was created with the help of the following Octave script:

pkg load signal
graphics_toolkit gnuplot
%=======================================================
% Consider the Gaussian function e^{-B (nT)^2}, where B is proportional to bandwidth.
  T = 1;
% Choose a relatively small bandwidth, so that one cycle of the DTFT approximates a true Fourier transform.
  B = 0.1;
  N = 1024;
  t = T*(-N/2 : N/2-1);                         % 1xN
  y = exp(-B*t.^2);                             % 1xN
% The DTFT has a periodicity of 1/T=1.  Sample it at intervals of 1/8N, and compute one full cycle.
% Y = fftshift(abs(fft([y zeros(1,7*N)])));
% Or do it this way, for comparison with the sequel:
  X = [-4*N:4*N-1];                             % 1x8N
  xlimits = [min(X) max(X)];
  f = X/(8*N);
  W = exp(-j*2*pi * t' * f);                    % Nx1 × 1x8N = Nx8N
  Y = abs(y * W);                               % 1xN × Nx8N = 1x8N
% Y(1)  = SUM(n=1,2,...,N): { e^(-B × t(n)^2) × e^(-j2π ×-4096/8N × t(n)) }
% Y(2)  = SUM(n=1,2,...,N): { e^(-B × t(n)^2) × e^(-j2π ×-4095/8N × t(n)) }
% Y(8N) = SUM(n=1,2,...,N): { e^(-B × t(n)^2) × e^(-j2π × 4095/8N × t(n)) }
  Y = Y/max(Y);

% Resample the function to reduce the DTFT periodicity from 1 to 3/8.
  T = 8/3;
  t = T*(-N/2 : N/2-1);                         % 1xN
  z = exp(-B*t.^2);                             % 1xN
% Resample the DTFT.
  W = exp(-j*2*pi * t' * f);                    % Nx1 × 1x8N = Nx8N
  Z = abs(z * W);                               % 1xN × Nx8N = 1x8N
  Z = Z/max(Z);
%=======================================================
hfig = figure("position", [1 1 1200 900]);

x1 = .08;                   % left margin for annotation
x2 = .02;                   % right margin
dx = .05;                   % whitespace between plots
y1 = .08;                   % bottom margin
y2 = .08;                   % top margin
dy = .12;                   % vertical space between rows
height = (1-y1-y2-dy)/2;    % space allocated for each of 2 rows
width  = (1-x1-dx-x2)/2;    % space allocated for each of 2 columns
x_origin1 = x1;
y_origin1 = 1 -y2 -height;  % position of top row
y_origin2 = y_origin1 -dy -height;
x_origin2 = x_origin1 +dx +width;
%=======================================================
% Plot the Fourier transform, S(f)

subplot("position",[x_origin1 y_origin1 width height])
area(X, Y, "FaceColor", [0 .4 .6])
xlim(xlimits);
ylim([0 1.05]);
set(gca,"XTick", [0])
set(gca,"YTick", [])
ylabel("amplitude")
%xlabel("frequency")
%=======================================================
% Plot the DTFT

subplot("position",[x_origin1 y_origin2 width height])
area(X, Z, "FaceColor", [0 .4 .6])
xlim(xlimits);
ylim([0 1.05]);
set(gca,"XTick", [0])
set(gca,"YTick", [])
ylabel("amplitude")
xlabel("frequency")
%=======================================================
% Sample S(f) to portray Fourier series coefficients

subplot("position",[x_origin2 y_origin1 width height])
stem(X(1:128:end), Y(1:128:end), "-", "Color",[0 .4 .6]);
set(findobj("Type","line"),"Marker","none")
xlim(xlimits);
ylim([0 1.05]);
set(gca,"XTick", [0])
set(gca,"YTick", [])
ylabel("amplitude")
%xlabel("frequency")
box on
%=======================================================
% Sample the DTFT to portray a DFT

FFT_indices = [32:55]*128+1;
DFT_indices = [0:31 56:63]*128+1;
subplot("position",[x_origin2 y_origin2 width height])
stem(X(DFT_indices), Z(DFT_indices), "-", "Color",[0 .4 .6]);
hold on
stem(X(FFT_indices), Z(FFT_indices), "-", "Color","red");
set(findobj("Type","line"),"Marker","none")
xlim(xlimits);
ylim([0 1.05]);
set(gca,"XTick", [0])
set(gca,"YTick", [])
ylabel("amplitude")
xlabel("frequency")
box on

說明

添加單行說明來描述出檔案所代表的內容
A Fourier transform and 3 variations caused by periodic sampling (at interval T) and/or periodic summation (at interval P) of the underlying time-domain function.

在此檔案描寫的項目

描繪內容

檔案歷史

點選日期/時間以檢視該時間的檔案版本。

日期/時間縮⁠圖尺寸使用者備⁠註
目前2019年8月23日 (五) 14:18於 2019年8月23日 (五) 14:18 版本的縮圖1,128 × 672​(59 KB)Bob Kre-color the portion of the DFT that is computed by the FFT
2014年8月2日 (六) 13:43於 2014年8月2日 (六) 13:43 版本的縮圖1,348 × 856​(71 KB)Bob KUser created page with UploadWizard

下列2個頁面有用到此檔案:

全域檔案使用狀況

以下其他 wiki 使用了這個檔案: