摘要
Display
en
01) Coordinate time 08) Axial radius of gyration 15) Axial angular momentum 22) Framedragging delayed angular velocity
02) Proper time 09) Poloidial radius of gyration 16) Polar angular momentum 23) Framedragging local velocity
03) Total time dilation 10) Radial coefficient 17) Radial momentum 24) Framedragging observed velocity
04) Gravitational time dilation 11) E kinetic 18) Cartesian radius 25) Observed particle velocity
05) Boyer Lindquist radius 12) Potential energy component 19) Cartesian X-axis 26) Local escape velocity
06) BL Longitude in radians 13) Total particle energy 20) Cartesian Y-axis 27) Delayed particle velocity
07) BL Latitude in radians 14) Carter Constant 21) Cartesian Z-axis 28) Local particle velocity
de
01) Koordinatenzeit 08) Axialer Gyrationsradius 15) Axialer Drehimpuls 22) Framedrag verzögerte Winkelgeschwindigkeit
02) Eigenzeit des Testpartikels 09) Poloidialer Gyrationsradius 16) Polarer Drehimpuls 23) Framedrag lokale Transversalgeschwindigkeit
03) Insgesamte Zeitdilatation 10) Radialer Vorfaktor 17) Radialer Impuls 24) Framedrag beobachtete Transversalgeschwindigkeit
04) Gravitative Zeitdilatation 11) E kinetisch 18) Kartesischer Radius 25) Beobachtete Totalgeschwindigkeit
05) Boyer Lindquist Radius 12) Potentielle Energie 19) Kartesische X-Achse 26) Lokale Fluchtgeschwindigkeit
06) BL Längengrad in Radianten 13) Totale Energie 20) Kartesische Y-Achse 27) Verzögerte Geschwindigkeit
07) BL Breitengrad in Radianten 14) Carter Konstante 21) Kartesische Z-Achse 28) Lokale Geschwindigkeit relativ zum ZAMO
Equations of motion
en
All formulas come in natural units:
G
=
M
=
c
=
1
{\displaystyle {\rm {G=M=c=1}}}
Shorthand Terms:
Σ
=
a
2
cos
2
θ
+
r
2
,
Δ
=
a
2
+
r
2
−
2
r
,
χ
=
(
a
2
+
r
2
)
2
−
a
2
sin
2
θ
Δ
{\displaystyle {\rm {\Sigma =a^{2}\cos ^{2}\theta +r^{2}\ ,\ \ \Delta =a^{2}+r^{2}-2r\ ,\ \ \chi =\left(a^{2}+r^{2}\right)^{2}-a^{2}\ \sin ^{2}\theta \ \Delta }}}
Metric components, covariant form:
g
t
t
=
Δ
−
a
2
sin
2
θ
Σ
,
g
t
ϕ
=
2
a
r
sin
2
θ
Σ
,
g
ϕ
ϕ
=
−
χ
sin
2
θ
Σ
,
g
r
r
=
−
Σ
Δ
,
g
θ
θ
=
−
Σ
{\displaystyle {g_{\rm {tt}}={\rm {\frac {\Delta -a^{2}\ \sin ^{2}\theta }{\Sigma }}}\ ,\ \ g_{\rm {t\phi }}={\rm {\frac {2\ a\ r\ \sin ^{2}\theta }{\Sigma }}}\ ,\ \ g_{\rm {\phi \phi }}={\rm {-{\frac {\chi \ \sin ^{2}\theta }{\Sigma }}}}\ ,\ \ g_{\rm {rr}}={\rm {-{\frac {\Sigma }{\Delta }}}}\ ,\ \ g_{\rm {\theta \theta }}=-\Sigma }}
Contravariant components:
g
t
t
=
χ
Δ
Σ
,
g
t
ϕ
=
2
a
r
Δ
Σ
,
g
ϕ
ϕ
=
−
Δ
−
a
2
sin
2
θ
Δ
Σ
sin
2
θ
,
g
r
r
=
−
Δ
Σ
,
g
θ
θ
=
−
1
Σ
{\displaystyle {g^{\rm {tt}}={\rm {\frac {\chi }{\Delta \ \Sigma }}}\ ,\ \ g^{\rm {t\phi }}={\rm {\frac {2\ a\ r}{\Delta \ \Sigma }}}\ ,\ \ g^{\rm {\phi \phi }}={\rm {-{\frac {\Delta -a^{2}\ \sin ^{2}\theta }{\Delta \ \Sigma \ \sin ^{2}\theta }}}}\ ,\ \ g^{\rm {rr}}={\rm {-{\frac {\Delta }{\Sigma }}}}\ ,\ \ g^{\rm {\theta \theta }}=-{\frac {1}{\Sigma }}}}
Coordinate time by proper time (dt/dτ):
t
˙
=
2
E
r
(
a
2
+
r
2
)
−
2
a
L
z
r
Δ
Σ
+
E
=
ς
1
−
v
2
{\displaystyle {\rm {{\dot {t}}={\frac {2\ E\ r\ \left(a^{2}+r^{2}\right)-2\ a\ L_{z}\ r}{\Delta \ \Sigma }}+E={\frac {\varsigma }{\sqrt {1-v^{2}}}}}}}
Radial coordinate time derivative (dr/dτ):
r
˙
=
Δ
p
r
Σ
{\displaystyle {\rm {{\dot {r}}={\frac {\Delta \ p_{r}}{\Sigma }}}}}
Time derivative of the covariant momentum's r-component (pr/dτ):
p
˙
r
=
(
r
−
1
)
(
μ
(
a
2
+
r
2
)
−
k
)
+
2
E
2
r
(
a
2
+
r
2
)
−
2
a
E
L
z
+
Δ
μ
r
Δ
Σ
−
2
p
r
2
(
r
−
1
)
Σ
{\displaystyle {\rm {{\dot {p}}_{r}={\frac {(r-1)\left(\mu \ \left(a^{2}+r^{2}\right)-k\right)+2\ E^{2}\ r\left(a^{2}+r^{2}\right)-2\ a\ E\ L_{z}+\Delta \ \mu \ r}{\Delta \ \Sigma }}-{\frac {2\ p_{r}^{2}\ (r-1)}{\Sigma }}}}}
Relation to the local velocity:
p
r
=
v
r
1
−
μ
2
v
2
Σ
Δ
{\displaystyle {\rm {p_{r}={\frac {v_{r}}{\sqrt {1-\mu ^{2}v^{2}}}}{\sqrt {\frac {\Sigma }{\Delta }}}}}}
Latitudinal time derivative (dθ/dτ):
θ
˙
=
p
θ
Σ
{\displaystyle {\rm {{\dot {\theta }}={\frac {p_{\theta }}{\Sigma }}}}}
Time derivative of the covariant momentum's θ-component (pθ/dτ):
p
˙
θ
=
sin
θ
cos
θ
(
L
z
2
sin
4
θ
−
a
2
(
E
2
−
μ
2
)
)
Σ
{\displaystyle {\rm {{\dot {p}}_{\theta }={\frac {\sin \theta \ \cos \theta \left({\frac {L_{z}^{2}}{\sin ^{4}\theta }}-a^{2}\left(E^{2}-\mu ^{2}\right)\right)}{\Sigma }}}}}
Relation to the local velocity:
p
θ
=
v
θ
Σ
1
−
μ
2
v
2
{\displaystyle {\rm {p_{\theta }={\frac {v_{\theta }\ {\sqrt {\Sigma }}}{\sqrt {1-\mu ^{2}v^{2}}}}}}}
Longitudinal time derivative (dФ/dτ):
ϕ
˙
=
2
a
E
r
+
L
z
csc
2
θ
(
Σ
−
2
r
)
Δ
Σ
{\displaystyle {\rm {{\dot {\phi }}={\frac {2\ a\ E\ r+L_{z}\ \csc ^{2}\theta \ (\Sigma -2r)}{\Delta \ \Sigma }}}}}
Time derivative of the covariant momentum's Ф-component (pФ/dτ):
p
˙
ϕ
=
0
{\displaystyle {\rm {{\dot {p}}_{\phi }=0}}}
Carter-constant:
Q
=
p
θ
2
+
cos
2
θ
(
a
2
(
μ
2
−
E
2
)
+
L
z
2
sin
2
θ
)
=
a
2
(
μ
2
−
E
2
)
sin
2
I
+
L
z
2
tan
2
I
{\displaystyle {\rm {Q=p_{\theta }^{2}+\cos ^{2}\theta \left(a^{2}(\mu ^{2}-E^{2})+{\frac {L_{z}^{2}}{\sin ^{2}\theta }}\right)=a^{2}\ (\mu ^{2}-E^{2})\ \sin ^{2}I+L_{z}^{2}\ \tan ^{2}I}}}
Carter k:
k
=
a
2
(
E
2
−
μ
2
)
+
L
z
2
+
Q
{\displaystyle {\rm {k=a^{2}\left(E^{2}-\mu ^{2}\right)+L_{z}^{2}+Q}}}
Total energy:
E
=
g
t
t
t
˙
+
g
t
ϕ
ϕ
˙
=
(
Σ
−
2
r
)
(
θ
˙
2
Δ
Σ
+
r
˙
2
Σ
+
Δ
μ
2
)
Δ
Σ
+
ϕ
˙
2
Δ
sin
2
θ
=
Δ
Σ
(
1
−
μ
2
v
2
)
χ
+
Ω
L
z
{\displaystyle {{\rm {E}}=g_{\rm {tt}}\ {\dot {\rm {t}}}+g_{\rm {t\phi }}\ {\dot {\phi }}={\rm {{\sqrt {{\frac {(\Sigma -2\ r)\left({\dot {\theta }}^{2}\ \Delta \ \Sigma +{\dot {r}}^{2}\ \Sigma +\Delta \ \mu ^{2}\right)}{\Delta \ \Sigma }}+{\dot {\phi }}^{2}\ \Delta \ \sin ^{2}\theta }}={\sqrt {\frac {\Delta \ \Sigma }{(1-\mu ^{2}v^{2})\ \chi }}}+\Omega \ L_{z}}}}}
Angular momentum on the Ф-axis:
L
z
=
−
g
ϕ
ϕ
ϕ
˙
−
g
t
ϕ
t
˙
=
sin
2
θ
(
ϕ
˙
Δ
Σ
−
2
a
E
r
)
Σ
−
2
r
=
v
ϕ
R
¯
1
−
μ
2
v
2
{\displaystyle {\rm {L_{z}}}=-g_{\phi \phi }\ {\dot {\phi }}-g_{\rm {t\phi }}\ {\dot {\rm {t}}}={\rm {{\frac {\sin ^{2}\theta \ ({\dot {\phi }}\ \Delta \ \Sigma -2\ a\ E\ r)}{\Sigma -2\ r}}={\frac {v_{\phi }\ {\bar {R}}}{\sqrt {1-\mu ^{2}v^{2}}}}}}}
with the radius of gyration
R
¯
ϕ
=
−
g
ϕ
ϕ
=
χ
Σ
sin
θ
{\displaystyle {\rm {{\bar {R}}_{\phi }}}={\sqrt {-g_{\phi \phi }}}={\sqrt {\frac {\chi }{\Sigma }}}\ \sin \theta }
Frame Dragging angular velocity (dФ/dt):
ω
=
−
g
t
ϕ
g
ϕ
ϕ
=
2
a
r
χ
{\displaystyle \omega =-{\frac {g_{t\phi }}{g_{\phi \phi }}}={\frac {\rm {2\ a\ r}}{\chi }}}
Gravitational time dilation (dt/dτ):
ς
=
g
t
t
=
χ
Δ
Σ
{\displaystyle \varsigma ={\sqrt {g^{\rm {tt}}}}={\sqrt {\frac {\chi }{\Delta \ \Sigma }}}}
Local velocity on the r-axis:
v
r
1
−
μ
2
v
2
=
r
˙
Σ
Δ
{\displaystyle {\rm {{\frac {v_{r}}{\sqrt {1-\mu ^{2}v^{2}}}}={\dot {r}}\ {\sqrt {\frac {\Sigma }{\Delta }}}}}}
Local velocity on the θ-axis:
v
θ
Σ
1
−
μ
2
v
2
=
θ
˙
Σ
{\displaystyle {\rm {{\frac {v_{\theta }\ {\sqrt {\Sigma }}}{\sqrt {1-\mu ^{2}v^{2}}}}={\dot {\theta }}\ \Sigma }}}
Local velocity on the Ф-axis:
v
ϕ
1
−
μ
2
v
2
=
L
z
R
¯
ϕ
{\displaystyle {\frac {\rm {v_{\phi }}}{\sqrt {1-\mu ^{2}{\rm {v^{2}}}}}}={\frac {\rm {L_{z}}}{\rm {{\bar {R}}_{\phi }}}}}
with the cartesian coordinates:
x
=
r
2
+
a
2
sin
θ
cos
ϕ
,
y
=
r
2
+
a
2
sin
θ
sin
ϕ
,
z
=
r
cos
θ
{\displaystyle {\rm {x={\sqrt {r^{2}+a^{2}}}\sin \theta \ \cos \phi \ ,\ y={\sqrt {r^{2}+a^{2}}}\sin \theta \ \sin \phi \ ,\ z=r\cos \theta \quad }}}
The observed velocity β is given by:
β
=
(
d
x
/
d
t
)
2
+
(
d
y
/
d
t
)
2
+
(
d
z
/
d
t
)
2
{\displaystyle {\rm {\beta ={\sqrt {(dx/dt)^{2}+(dy/dt)^{2}+(dz/dt)^{2}}}}}}
The local escape velocity is given by the relation:
ς
=
1
/
1
−
v
e
s
c
2
→
v
e
s
c
=
ς
2
−
1
/
ς
{\displaystyle {\rm {\varsigma =1/{\sqrt {1-v_{\rm {esc}}^{2}}}\ \to \ v_{\rm {esc}}={\sqrt {\varsigma ^{2}-1}}/\varsigma }}}
Sources:[ 1] [ 2] [ 3] [ 4] [ 5] [ 6]
References
↑ Pu, Yun, Younsi & Yoon: General-relativistic radiative transfer in Kerr spacetime , p. 2+
↑ Janna Levin & Gabe Perez-Giz: A Periodic Table for Black Hole Orbits , p. 30+
↑ Scott A. Hughes: Nearly horizon skimming orbits of Kerr black holes , p. 5+
↑ Janna Levin & Gabe Perez-Giz: The Phase Space Portrait , p. 2+
↑ Misner, Thorne & Wheeler (MTW): The Bible archive copy at the Wayback Machine , p. 897+
↑ Simon Tyran: Kerr Orbits / Gravitationslinsen
de
Für eine deutschsprachige Version der Bewegungsgleichungen geht es hier entlang
授權條款
我,本作品的著作權持有者,決定用以下授權條款發佈本作品:
您可以自由:
分享 – 複製、發佈和傳播本作品
重新修改 – 創作演繹作品
惟需遵照下列條件:
姓名標示 – 您必須指名出正確的製作者,和提供授權條款的連結,以及表示是否有對內容上做出變更。您可以用任何合理的方式來行動,但不得以任何方式表明授權條款是對您許可或是由您所使用。
相同方式分享 – 若要根據本素材進行再混合、轉換或創作,則必須以與原作相同或相容的授權 來發布您的作品。 https://creativecommons.org/licenses/by-sa/4.0 CC BY-SA 4.0 Creative Commons Attribution-Share Alike 4.0 true true
File Usage on Wikipedia
185
187
8
8
758
500
inner ergosphere and ring singularity
英文 Retrograde obit around a spinning black hole
德文 Retrograder Orbit um ein rotierendes schwarzes Loch