摘要
Equations
The observed angular velocity of the frame drag in the system of the coordinate bookkeeper far away from the mass is[1]
in units of
and with
The radius of gyration is given by[2]
and the cartesian coordinates in the bookkeeper's frame of reference are
The gravitational time dilation component is
so the observed transverse velocity of a frame dragged zero angular momentum probe is
and the local velocity
That is exactly the speed of light at the outer edge of the outer ergosphere at
which corresponds to a Boyer-Lindquist radius of
and a cartesian radius of
at the equator.
References
- ↑ Andrei & Valeri Frolov: Rigidly rotating ZAMO surfaces in the Kerr spacetime, page 1, eq. 5
- ↑ Scott A. Hughes: Nearly horizon skimming orbits of Kerr black holes, pages 5, 6 etc
授權條款
我,本作品的著作權持有者,決定用以下授權條款發佈本作品:
- 您可以自由:
- 分享 – 複製、發佈和傳播本作品
- 重新修改 – 創作演繹作品
- 惟需遵照下列條件:
- 姓名標示 – 您必須指名出正確的製作者,和提供授權條款的連結,以及表示是否有對內容上做出變更。您可以用任何合理的方式來行動,但不得以任何方式表明授權條款是對您許可或是由您所使用。
- 相同方式分享 – 若要根據本素材進行再混合、轉換或創作,則必須以與原作相同或相容的授權來發布您的作品。
https://creativecommons.org/licenses/by-sa/4.0CC BY-SA 4.0 Creative Commons Attribution-Share Alike 4.0 truetrue
File usage on Wikipedia