傳遞集合、即在ZF或ZFC集合论中,一个集合(或类)
是传递的,如果

或等價地,

或者

設
為傳遞集,於是由
能推出
這和偏序的傳遞性類似。因此,說
是傳遞集相當於說
是一個偏序集。
在其它有基本元素的概念的集合論中,傳遞性可以說成
- 如果
不是基本元素且
,則
不包含基本元素的一个集合
是传递性的,当且仅当
。
集合
的传递闭包是滿足
的(在包含關係下)最小的传递集
。
設
為集合,则
的传递闭包可以直觀地描述成:
。
传递类经常用于构造集合论自身的释义,通常叫做内模型。原因是有界公式所定义的性质对于传递类是绝对的。
序数可以被定义为成员均是传递集的传递集。